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A B S T R A C T   

North American evergreen forests cover large areas and influence the global carbon cycle. Satellite remote 
sensing has been used to track the phenology of ecosystem photosynthesis of these forests by detecting variation 
in vegetation optical properties associated with physiological and structural features, and most of these methods 
have been closely tied to vegetation greenness. However, in evergreens, the application of satellite data to 
monitor photosynthetic phenology is often limited by the lack of sensitivity of greenness-based indices. In this 
study, we identified 47 evergreen forest flux sites in North America that had MODIS observation overlapping 
with the flux tower records. We then calculated four vegetation indices using MODIS MAIAC data (MCD19A1), 
including NDVI, CCI, NIRv, and kNDVI, for the 47 flux sites and evaluated relationships between gross primary 
productivity (GPP) and vegetation indices across the North American evergreen forests. Our results showed that 
snow had substantial effects on the performance of all vegetation indices in tracking GPP phenology, particularly 
in the early spring when rapid changes occurred to both GPP and snow cover. Different vegetation indices were 
affected differently, indicating contradictory and confounding effects of snow on these indices. After correcting 
for the snow effects, both CCI and NIRv performed well in tracking GPP phenology, albeit for different reasons. 
CCI is sensitive to seasonal changes in the relative levels of chlorophyll and carotenoid pigments, which are 
closely tied to GPP phenology in evergreens. NIRv is sensitive to the absorbed photosynthetically active radiation 
and to the contribution of deciduous components to the overall optical properties. We also found that correla
tions between GPP and vegetation indices varied among ecoregions and climate classes. In general, regions with 
pronounced seasonal GPP patterns had stronger correlations between GPP and greenness-based indices than 
regions with weaker seasonal GPP patterns. These biome differences were less pronounced for CCI. The snow 
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artifacts and complementary vegetation index effects reported here should be considered in any large-scale 
studies of GPP using reflectance-based indices from optical satellites.   

1. Introduction 

Evergreen forest ecosystems occupy approximately 21.6 million km2 

area representing ~49.3% of global tree cover (FAO and UNEP, 2020). 
In North America, evergreen forests cover large expanses, including the 
boreal (taiga) forests in the northern high latitude, coastal forests of the 
Pacific Northwest, eastern coastal forests along the Appalachians, forests 
of the Rocky Mountains, and other western montane forests. These 
evergreen forests provide crucial ecosystem goods and services, 
including flood regulation, water purification, timber, and wildlife 
habitat (Hassan et al. 2005; Wells et al., 2020), and play important roles 
in regulating global climate and global carbon cycle in part due to their 
geographic extent (Bonan, 2008). The distribution and growth of ever
green forests are influenced by climate, particularly temperature and 
precipitation, but these effects vary among ecoregions (Bowling et al., 
2018; Ensminger et al., 2004; Sevanto et al., 2006; Turcotte et al., 2009). 
In recent years, extensive warming and drying, coupled with insect in
festations, fires and harvests, have led to evergreen forest decline in 
much of North America, from the southwest to the boreal regions of 
Canada and Alaska (Kirilenko and Sedjo, 2007; Williams et al., 2013; 
McDowell et al., 2016; White et al., 2017; Stralberg et al., 2020; Wells 
et al., 2020). These recent trends suggest that a warmer climate might 
not necessarily lead to higher productivity of evergreen forests espe
cially in regions concurrently experiencing a decrease in precipitation 
(Ammer, 2019; Zhang et al., 2022). Long-term changes in climate can 
also have a lasting effect on ecosystem productivity by causing a shift in 
species composition and thereby altering community productivity po
tential (Dial et al., 2022; Thompson et al., 2013). 

Satellite remote sensing can provide repeated, standardized mea
surements over large areas and can serve as a tool to estimate ecosystem 
gross primary productivity (GPP) at different scales. The widely used 
Normalized Difference Vegetation Index (NDVI) (Running et al., 2004) 
and newly developed products that are based on red and near-infrared 
(NIR) bands, including NIRv (Badgley et al., 2017) and kNDVI 
(Camps-Valls et al., 2021), have been used to monitor GPP phenology – 
seasonal pattern of GPP including timing and magnitude – of different 
ecosystems, often at large spatial and temporal scales (e.g. 1 km pixel 
size and monthly timesteps). Studies employing these remotely sensed 
indices using empirical functions or the light use efficiency model have 
generally revealed site- and biome-based differences in the fidelity of 
their relationships with GPP (Heinsch et al., 2003; Running et al., 2004; 
Badgley et al., 2017; Ryu et al., 2019). Compared to deciduous forests, 
predicting GPP phenology based on NDVI remains challenging for 
evergreen forests due to the limited seasonal variation in green canopy 
structure (Gamon et al., al.,1995; Running et al., 2004; Hmimina et al., 
2013; Peng et al., 2017). NDVI-based indices track changes in greenness 
based on changes in chlorophyll, canopy growth or senescence (Zeng 
et al., 2022), but miss the subtle changes in photosynthetic activity 
caused by physiological regulation, which often is the preponderant 
influence on GPP phenology in evergreens (Gamon et al., 2015&2016, 
2015; Springer et al., 2017; Wong et al., 2020). In a previous study that 
compared GPP and NDVI-based vegetation indices derived using MODIS 
data, the lowest correlations between GPP and VIs were found for 
evergreen forests among all vegetated biomes examined (Camps-Valls 
et al., 2021). In contrast, indices based on the photoprotective roles of 
carotenoid pigments, e.g., the Photochemical Reflectance Index (PRI) 
and the Chlorophyll-Carotenoid Index (CCI), have shown good fidelity 
to GPP phenology in evergreens (Gamon et al., 2016; Wong et al., 2022). 
These results indicate complementary behavior of vegetation indices 
(the complementarity hypothesis; Gamon 2015, Gamon et al., 2016), 
with some addressing GPP phenology via greenness and others detecting 

less visible photoregulatory processes associated with carotenoid pig
ments and non-photochemical quenching of fluorescence. 

CCI was designed to monitor GPP phenology of evergreen forests 
because of its sensitivity to seasonal pigment change, particularly the 
relative levels of chlorophyll and carotenoid pigments (Gamon et al., 
2016). Sometimes called “MODIS PRI” (Rahman et al., 2004; Drolet 
et al., 2008; Middleton et al., 2016), the CCI formula is slightly different 
from the original PRI formula, which was originally designed to monitor 
the diurnal activity of the xanthophyll cycle (Gamon et al., 2016). Like 
PRI, CCI is sensitive to seasonally changing pigment pools, but unlike 
PRI, it is available from the MODIS sensors (Aqua and Terra), making it 
readily available for global analyses of GPP phenology. The long-term 
variation of the ratio between chlorophyll and carotenoid pigments 
detected by CCI indicates changes in vegetation photosynthetic activity 
(Wong and Gamon, 2015; Gamon et al., 2016; Bowling et al., 2018; 
Cheng et al., 2020; Wong et al., 2020; Walter-McNeill et al., 2021). For 
example, increased carotenoids in the winter period reflect more pho
toprotection for overwintering evergreen species (Demmig-Adams and 
Adams, 1996; Verhoeven, 2014; Bowling et al., 2018). Several studies 
have shown that CCI can track GPP phenology in both evergreen and 
deciduous trees at different spatial scales (Gamon et al., 2016; Springer 
et al., 2017; Wong et al., 2020; Pierrat et al., 2022; Yang et al., 2022); 
however, like all reflectance-based vegetation indices, CCI is also 
affected by snow cover, which can perturb its relationship with GPP. 
While these snow-cover effects have been considered before for some 
indices (e.g., NDVI; Myers-Smith et al., 2020), they have not been well 
studied for others (e.g., CCI). The overall influence of snow on remote 
observations of GPP phenology is unclear, as most studies have not 
attempted to correct for the effects of snow, leaving open the possibility 
of significant artifacts in our interpretation of GPP. 

Snow typically has very high visible reflectance and very low 
shortwave-infrared reflectance (Dozier et al., 2009) and therefore affects 
all reflectance-based vegetation indices to some degree. Snow coverage 
can be readily estimated using the MODIS Normalized Difference Snow 
Index (NDSI) that utilizes the green (B4) and SWIR (B6) bands (Riggs 
et al., 2016). However, NDSI may fail to detect snow pixels due to the 
malfunction of a large part of Aqua band 6 detectors (Gladkova et al., 
2012). Snow detection using NDSI is also sensitive to conditions with 
low visible reflectance, for example, low illumination when solar zenith 
angle is > 70◦ and the landscape shadowed by clouds or terrain (Lv and 
Pomeroy, 2019) and forest coverage (Xin et al. 2012; Wang et al., 2018). 
As a consequence, correcting for snow cover can be complicated, yet 
remains critical because snow-affected satellite-based vegetation indices 
can confound the relationship between GPP and vegetation indices, 
particularly in northern latitude and high-altitude regions (Jin and 
Eklundh, 2014; Jin et al., 2017; Springer et al., 2017). Thus, it is likely 
that changes in apparent GPP based on vegetation indices are influenced 
by snow cover, causing uncertainty in satellite-derived estimates of 
seasonal and interannual GPP patterns and trends (Myers-Smith et al., 
2020). 

In this study, we integrated surface flux tower eddy covariance flux 
data with MODIS vegetation indices across different types of evergreen 
forests in North America, ranging from subtropical to subarctic climates, 
to test the feasibility of different MODIS-derived vegetation indices to 
track GPP in evergreen forests. Our major hypotheses were: (1) snow 
cover has a substantial effect on the performance of vegetation indices in 
tracking GPP phenology, and removing snow-based artifacts improves 
the relationship between GPP and vegetation indices; (2) CCI performs 
better than NDVI-based indices in monitoring GPP of evergreen forests 
because of its sensitivity to seasonal pigment change; and (3) the re
lationships between GPP and VIs vary geographically (e.g., by 
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ecoregion) due to contrasting climate controls and forest composition on 
the physiological function and optical properties of evergreen forests. 

2. Methods 

2.1. Flux sites 

Using three eddy covariance databases including FLUXNET2015 
(Pastorello et al., 2020), AmeriFlux, and the National Ecological Ob
servatory Network (NEON), we identified evergreen-dominated eddy 
covariance flux tower sites in North America that had MODIS observa
tion overlapping with flux tower observations (n = 99 towers). We 
applied a quality check procedure to the flux data and shortened the list 
of sites by: (1) omitting sites that had less than one year of data; (2) 
omitting sites with failed net ecosystem exchange (NEE) partitioning 
algorithms and failed GPP analysis (details below); and (3) omitting sites 
located in topographically complex terrain, as described below. We used 
the MERIT global digital elevation model (Yamazaki et al., 2017) and 
Landsat NDVI to evaluate the landscape within the flux footprints in 
both vertical and horizontal dimensions. The spatial resolutions of 
MERIT DEM and Landsat NDVI are 3 arc seconds (~90 m at the equator) 
and 30 m, respectively. We calculated the standard deviation of eleva
tion and summer NDVI during the flux sampling time periods within 1 
km2 areas at each flux site and eliminated sites in mountainous areas 
(standard deviation of elevation > 50 m) and heterogenous vegetation 
cover types (standard deviation of NDVI > 0.2). This site suitability 
analysis was done using Google Earth Engine (Gorelick et al., 2017). 
This procedure led to a final selection of 47 evergreen flux tower sites for 
our analysis, spanning 6 ecoregions and 6 climate classes (Fig. 1, 
Table 1). 

2.2. Flux tower data processing 

Flux data from these 47 sites were processed using the REddyProc 
package in R (Wutzler et al., 2018). We used two methods, including 
daytime (Lasslop et al., 2010) and nighttime (Reichstein et al., 2005) to 
partition the eddy covariance measured NEE into GPP based on the 
calculated ecosystem respiration for each site, with air temperature as 
the temperature driver, and a 50% friction velocity threshold. The daily 
GPP derived from the daytime partitioning method (Lasslop et al., 2010) 

is presented in the main text, while that from the nighttime partitioning 
is presented in the supplemental materials. 

2.3. MODIS MAIAC data 

MODIS Collection 6 data were corrected to surface reflectance using 
the Multi-Angle Implementation of Atmospheric Correction algorithm 
(MAIAC; Lyapustin et al., 2018, 2012). The MAIAC product (i.e., 
MCD19A1) offers land surface bidirectional reflectance factor for both 
MODIS land and ocean bands (bands 1–12) at 1 km spatial resolution on 
a per-observation basis in daily files. The high temporal resolution of the 
MAIAC product potentially provides more information on vegetation 
phenology than the 16-day composite MODIS data (Hmimina et al., 
2013; Wang et al., 2020). To keep a large dataset for snow detection 
(details below), we did not filter data with large view zenith angles 
(Middleton et al., 2016) or solar zenith angles. Using a threshold of 45◦

view zenith angle can remove more than 40% of the data (Wang et al., 
2020), and winter observations for high latitude regions often have large 
solar zenith angles. To generate a daily product for vegetation indices, 
we used the observation with minimum view zenith angle when multi
ple data points were available within a single day. 

We explored the relationship between flux GPP and four MODIS 
vegetation indices (VIs) including NDVI Running et al., 2004), CCI 
(Gamon et al., 2016), NIRv (Badgley et al., 2017), and kNDVI 
(Camps-Valls et al., 2021) that have been used to track GPP phenology 
across different ecosystems. For each site, we used the pixel that had the 
minimum distance between the center of pixel and the flux site. The 
MODIS VIs were calculated from MODIS band (“B”) numbers indicated 
by the subscripts in Eqs. (1)–(3) below. In Eq. (4), “tanh” stands for the 
hyperbolic tangent function (Camps-Valls et al., 2021). 

NDVI =
B2 − B1

B2 + B1
(1)  

NIRv = (NDVI − 0.08) × B2 (2)  

CCI =
B11 − B1

B11 + B1
(3)  

kNDVI = tanh
(
NDVI2) (4) 

Fig. 1. Locations of evergreen forest flux towers and related ecoregions. Level-1 ecoregion map of North America was obtained from the United States Environmental 
Protection Agency (McMahon et al., 2001; Omernik and Griffith, 2014). 
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Table 1 
Locations, climates and ecoregions of flux sites used in this study. Flux sites are sorted by latitude (from North to South). MAP and MAT indicate mean annual 
precipitation and mean annual temperature, respectively.  

Site ID Latitude 
(◦) 

Longitude 
(◦) 

Elevation 
(m) 

MAP 
(mm) 

MAT ( ◦C) Level-1 Ecoregion Köppen Climate Class Refs. 

US-Prr 65.12 − 147.49 210 275 − 2.00 Taiga Subarctic Iwahana et al. (2019) 
US-Uaf 64.87 − 147.86 155 263 − 2.90 Taiga Subarctic Ueyama et al. (2023) 
US-Bn1 63.92 − 145.38 518 289 0.29 Northwestern forested 

mountains 
Dry continental Randerson (2016) 

US-xDJ 63.88 − 145.75 529 300 − 2.00 Northwestern forested 
mountains 

Subarctic NEON (2022) 

CA-NS3 55.91 − 98.38 260 502 − 2.87 Northern forests Subarctic Goulden (2019) 
CA-NS2 55.91 − 98.52 260 499 − 2.88 Northern forests Subarctic Goulden (2019) 
CA- 

Man 
55.88 − 98.48 259 520 − 3.20 Northern forests Subarctic Amiro (2016) 

CA-NS1 55.88 − 98.48 260 500 − 2.89 Northern forests Subarctic Goulden (2019) 
CA-NS5 55.86 − 98.49 260 500 − 2.86 Northern forests Subarctic Goulden (2019) 
CA-LP1 55.11 − 122.84 751 570 2.00 Northwestern forested 

mountains 
Mediterranean (Csa) Black (2022) 

CA-SF1 54.49 − 105.82 536 470 0.40 Northern forests Subarctic Amiro (2020) 
CA-SF2 54.25 − 105.88 520 470 0.40 Northern forests Subarctic Amiro (2019) 
CA-Obs 53.99 − 105.12 629 405 0.79 Northern forests Subarctic Black (2016) 
CA-SJ2 53.95 − 104.65 580 430 0.11 Northern forests Subarctic Barr and Black (2018) 
CA-Ojp 53.92 − 104.69 579 430 0.12 Northern forests Subarctic Black (2019) 
CA-SJ1 53.91 − 104.66 580 430 0.13 Northern forests Subarctic Barr (2018) 
CA-SJ3 53.88 − 104.65 498 433 0.13 Northern forests Subarctic Barr (2018) 
CA-Ca2 49.87 − 125.29 300 1474 9.86 Marine west coast forest Marine west coast Black (2018) 
CA-Qfo 49.69 − 74.34 382 962 − 0.36 Northern forests Subarctic Margolis (2019) 
CA-Ca3 49.53 − 124.90 162 1676 9.94 Marine west coast forest Marine west coast Black (2023) 
CA-Qcu 49.27 − 74.04 392 949 0.13 Northern forests Subarctic Margolis (2016) 
CA-Na1 46.47 − 67.10 341 1102 7.09 Eastern temperate forests Warm summer 

continental 
Bourque (2018) 

US-Wrc 45.82 − 121.95 371 2452 8.80 Northwestern forested 
mountains 

Mediterranean Wharton (2016) 

US- 
xWR 

45.82 − 121.95 407 2225 9.20 Northwestern forested 
mountains 

Mediterranean NEON (2022) 

US-xAB 45.76 − 122.33 363 2450 10.00 Marine west coast forest Mediterranean NEON (2022) 
US-Ho2 45.21 − 68.75 91 1064 5.13 Eastern temperate forests Warm summer 

continental 
Hollinger (2021) 

US-Ho1 45.20 − 68.74 60 1070 5.27 Eastern temperate forests Warm summer 
continental 

Hollinger (2021) 

US-Me2 44.45 − 121.56 1253 523 6.28 Northwestern forested 
mountains 

Mediterranean Law (2022) 

US-Me5 44.44 − 121.57 1188 590 6.47 Northwestern forested 
mountains 

Mediterranean Law (2021) 

US-Me6 44.32 − 121.61 998 494 7.59 Northwestern forested 
mountains 

Mediterranean Law (2021) 

US-Me3 44.32 − 121.61 1005 719 7.07 Northwestern forested 
mountains 

Mediterranean Law (2018) 

US-Blk 44.16 − 103.65 1718 573 6.23 Northwestern forested 
mountains 

Warm summer 
continental 

Meyers (2016) 

CA-TP4 42.71 − 80.36 184 1036 8.00 Eastern temperate forests Warm summer 
continental 

Arain (2018) 

US-CPk 41.07 − 106.12 2750 545 6.10 Northwestern forested 
mountains 

Subarctic Ewers et al. (2016) 

US- 
NR1 

40.03 − 105.55 3050 800 1.50 Northwestern forested 
mountains 

Subarctic Blanken et al. (2022) 

US-Blo 38.90 − 120.63 1315 1226 11.09 Northwestern forested 
mountains 

Mediterranean Goldstein (2019) 

US- 
Vcm 

35.89 − 106.53 3003 646 6.40 Northwestern forested 
mountains 

Warm summer 
continental 

Litvak (2022) 

US-Vcp 35.86 − 106.60 2500 550 9.80 Northwestern forested 
mountains 

Warm summer 
continental 

Litvak (2022) 

US-NC2 35.80 − 76.67 5 1320 16.60 Eastern temperate forests Humid subtropical Noormets et al. (2022) 
US-Fmf 35.14 − 111.73 2160 546 9.50 Temperate sierras Mediterranean Dore and Kolb (2019) 
US-Fuf 35.09 − 111.76 2180 562 8.70 Temperate sierras Mediterranean Dore and Kolb (2019) 
US-xTA 32.95 − 87.39 135 1382 17.20 Eastern temperate forests Humid subtropical NEON (2022) 
US-xJE 31.19 − 84.47 44 1307 19.20 Eastern temperate forests Humid subtropical NEON (2022) 
US-SP2 29.76 − 82.25 50 1314 20.07 Eastern temperate forests Humid subtropical Bracho and Martin, 

2016a 
US-SP3 29.75 − 82.16 50 1312 20.25 Eastern temperate forests Humid subtropical Bracho and Martin, 

2016b 
US-SP1 29.74 − 82.22 50 1309 20.06 Eastern temperate forests Humid subtropical Bracho and Martin, 

2016c 
US-xSB 29.69 − 81.99 45 1302 20.90 Eastern temperate forests Humid subtropical NEON (2022)  
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2.4. Snow removal algorithm applied to MODIS VIs 

To evaluate the snow effects on MODIS vegetation indices, we used 
data collected at the CA-Qfo flux site (located in Quebec, Canada, lati
tude: 49.69◦, longitude: − 74.34◦), which is also registered as site Chi
bougamau within the PhenoCam network (Seyednasrollah et al., 2019). 
The overlapping observations of eddy covariance, MODIS, and Pheno
Cam imagery in 2009 at this black spruce and jack pine dominated forest 
site enabled us to delineate the confounding effects of snow on vegeta
tion indices. The snow-affected periods, including spring snow melt, 
were visually identified from the PhenoCam images, which clearly 
revealed periods of snow cover for this particular site due to an area of 
bare ground included in the images. 

To detect and then minimize the snow effects on the GPP-VI re
lationships, we developed a method to identify snow pixels by 
combining NDSI, CCI and kNDVI, because combining multiple indices 
leads to improved snow detection for forested areas over using NDSI 
alone (Lv and Pomeroy, 2019; Wang et al., 2018). In this study, we used 
CCI and kNDVI in snow detection. Unlike NDVI-based indices, snow 
increases CCI values (Figure S1 in the supplemental materials). kNDVI 
was designed to be insensitive to NDVI variation when NDVI is low 
(Camps-Valls et al., 2021). For evergreen forests, these low NDVI values 
are most likely caused by snow cover. Thus, kNDVI values are constantly 
low, with limited variations during snow-covered periods (Figure S1 in 
the supplemental materials). This combination of CCI and kNDVI is 
particularly useful to separate snow-affected data from snow free data in 
the kNDVI-CCI space, which has relatively low kNDVI values and high 
CCI values (Figure S2 in the supplemental materials). For sites that have 
a long snow-affected period (annual total number of snow-affected days 
> 30), we identified snow pixels based on NDSI and trained a binary 
support vector machine (SVM; Boser et al., 1992) to distinguish 

snow-affected pixels using data collected during the flux and MODIS 
data overlap for each site. To automate model selection for each site, we 
used Bayesian optimization in Matlab 2021b to optimize hyper
parameters of each SVM classification model (Gelbart et al., 2014; 
Snoek et al., 2012). In each SVM snow detection model, we used NDSI to 
label pixels affected by snow and used CCI and kNDVI as inputs of SVM. 
We tested the SVM classification accuracy at each site using 10-fold 
cross-validation. We then applied the snow detection algorithm to all 
the data at this site to identify snow-affected data that might be missed 
by using NDSI alone (Figs. 2, S1 and S2 in the supplemental materials). 
We removed the data either labeled as snow according to NDSI or 
classified as snow by the binary SVM model. For sites whose total 
number of annual snow-affected days was less than 30 days, we removed 
the snow-affected pixels identified with NDSI, because a small training 
sample had the potential to decrease the accuracy of SVM classification. 
After removing snow-affected data, we then used asymmetric Gaussian 
functions (Jönsson and Eklundh, 2004) to fit the snow-free data and 
extend the fitted curve to estimate the theoretical snow-free vegetation 
index values in the winter. To quantify the effectiveness of snow removal 
algorithm, we calculated the Pearson correlation coefficients between 
daily GPP and vegetation indices before and after snow removal for the 
47 sites. 

2.5. Contributions of snow artifacts vs. biological effects to vegetation 
index variations 

To evaluate the extent of snow influence for each index, we calcu
lated a series of “delta” values due to snow, vegetation, and all factors 
combined. To do this, we compared the change in yearly VI values (i.e., 
the “total” range across the annual period in VI values; “yearly” delta VI) 
to the change due to snow artifacts (i.e., “snow-affected” delta VI values) 
and due to actual vegetation change (i.e., “snow-free” delta values, the 

Fig. 2. Seasonal course of GPP (black lines) and vegetation indices (NDVI, CCI, NIRv, and kNDVI) before (blue points) and after (red points) snow removal (“SR”). 
Data were collected from the CA-Qfo flux site in 2009. Grey-shaded areas denote snow-affected periods, and the vertical yellow band indicates snow-melt period in 
the late spring based on visual inspection of PhenoCam imagery. We also identified an additional snow day on October 13, 2009 using PhenoCam imagery. 
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change in VI values due to the residual effect of vegetation, following 
correction for snow cover). Yearly deltas were calculated by subtracting 
the minimum value from the maximum value within a year. Snow-free 
(“vegetation”) deltas were calculated by subtracting the minimum 
value from the maximum value from May – October. Snow-affected 
deltas were calculated by subtracting the minimum value from the 
maximum value in the snow affected months (November to April). This 
methodology allowed us to evaluate the annual change in a vegetation 
index due to actual biological effects associated with vegetation struc
tural and physiological changes versus those due to snow artifacts. 

2.6. Relationships between VIs and apar and ε in the LUE model 

To explore the relationships between MODIS vegetation indices and 
different terms in the light use efficiency (LUE) model, we combined 
APAR using daily maximum PPFD from the flux measurements with 
MODIS NDVI to provide an indicator of fAPAR. Considering the over
estimation of MODIS fAPAR especially for sparse forests in boreal region 
(Iwata et al., 2013; Yan et al., 2016), we directly estimated fAPAR by 
utilizing a linear relationship between NDVI and fAPAR (Sims et al., 
2006). Then, the efficiency of utilizing light in photosynthesis (ε) was 
calculated as 

ε =
GPP
APAR

=
GPP

PPFD × fAPAR
=

GPP
PPFD × f (NDVI)

(5)  

3. Results 

3.1. Snow effects on MODIS VIs 

The influence of snow cover varied with vegetation index at the CA- 
Qfo site (Figs. 2 and 3). All vegetation indices were affected by snow, 
which increased CCI values, but decreased NDVI-based indices (NDVI, 
NIRv, and kNDVI). Among the NDVI-based indices, kNDVI was least 
sensitive to changes in snow cover (exhibiting least variation) due to the 
compressed variation when NDVI values were low during snow-covered 
periods. The contrasting responses to snow cover of CCI and kNDVI to 
the presence of snow enabled snow detection with these two indices 
(Figs. 2, S1 and S2 in the supplemental materials). 

The magnitude of changes in the vegetation indices due to snow vs. 
vegetation phenology became clear by means of “delta” values for each 
index, defined as the absolute difference between summer maxima to 
winter minima with and without snow correction (Fig. 3). All indices 
showed large snow effects, which we refer to as “snow artifacts” because 
they represent the potentially confounding effects of snow on relation
ships between GPP and vegetation indices. In all cases, the snow removal 
algorithm reduced the snow effects on vegetation indices (Figs. 2 and 3). 

The performance of vegetation indices in tracking GPP phenology 
was clearly confounded by snow coverage. At the CA-Qfo site, snow 
cover greatly exaggerated the seasonal variation in NDVI; most of the 
seasonal variation in NDVI-based indices occurred during transitions in 
snow-cover when daily GPP was less than 1 g C m− 2 d− 1 (Figs. 3 and 4), 
revealing a clear artifact of snow cover on the GPP-NDVI relationship. 

Fig. 3. Seasonal delta vegetation index (NDVI, CCI, NIRv, and kNDVI) values before (a) and after (b) snow removal in 2009. Yearly (blue) deltas were calculated by 
subtracting the minimum value from the maximum value within a year. Snow-free (red) deltas were calculated by subtracting the minimum value from the maximum 
value from May – October, and represent the delta VI values attributable to vegetation change. Snow-affected (yellow) deltas were calculated by subtracting the 
minimum value from the maximum value in the snow affected months (November to April). Data were collected from the CA-Qfo flux site. 
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Similar effects were seen for the other greenness indices (NIRv and 
kNDVI), with much of the seasonal change attributable to changes in 
snow cover rather than changes in vegetation associated with GPP 
(Fig. 4). Snow had the opposite effect on CCI; snowmelt reversed the sign 
of the relationship between GPP and CCI (from positive to negative) 
(Fig. 4), greatly reducing the seasonal variation in CCI and its correlation 
with GPP. 

Due to the effects of snow on these reflectance-based indices 
(Figs. 2–4), removal of snow-affected data clearly changed the rela
tionship between GPP and vegetation indices in each site, expressed as 
the correlations between daily GPP and vegetation indices for the 47 
sites (Fig. 5). The high accuracy of snow identification using binary SVM 
classification (average classification accuracy = 0.968) and low errors in 
fitting vegetation indices seasonal curves indicated high confidence in 
the snow removal algorithm (Table S1 in the supplemental materials). 
Before snow correction, all of the NDVI-based indices were more 
strongly correlated with GPP than CCI, which had a notably weaker 
correlation with GPP (Fig. 5). After snow removal, the correlation be
tween GPP and CCI was enhanced, while the correlation between GPP 
and NDVI-based indices (NDVI, NIRv, and kNDVI) decreased slightly 
(Fig. 5). After snow correction, we also noticed less among site varia
tions between GPP-CCI correlation than GPP-NDVI based indices cor
relations (Fig. 5). 

Snow removal clearly improved the ability of CCI to track GPP 
change for the subarctic and subtropical sites (Table 1 and Fig. 6). 
Overall, CCI and NIRv yielded stronger relationships with GPP than 
NDVI and kNDVI (Fig. 6). Strong relationships between GPP and NDVI 
based indices were found for subarctic and high elevation sites that 

belong to the ecoregion of Northwestern forested mountains, likely 
because of a large contribution of the background annual vegetation, 
which could enhance the relationship between overall ecosystem GPP 
and greenness indices. For most Mediterranean sites, CCI outperformed 
NDVI based indices in tracking GPP phenology, expressed as stronger 
correlation with daily GPP (Fig. 6). 

Strong correlations were found between APAR and vegetation 
indices, except for the mid-latitude sites (Fig. 6). For most of the sites, 
NIRv showed the strongest correlation with APAR among three tested 
vegetation indices, except for Mediterranean and humid subtropical 
(Eastern temperate forests) sites (Fig. 6). There were only relatively 
weak correlations between LUE and vegetation indices, and these cor
relations were strongest for the high latitude boreal forests. For most of 
the sites, CCI showed a slightly better relationship with LUE than the 
NDVI-based indices, largely because fewer sites reported CCI having low 
(negative) correlations, unlike the NDVI-based indices. 

Correlation between GPP and vegetation indices varied with ecor
egion (Fig. 7). Overall, vegetation indices performed best at monitoring 
GPP at the northern boreal and taiga sites with a subarctic climate and at 
the Eastern temperate sites with a humid subtropical climate, but 
(except for CCI) worked poorly at Temperate Sierra sites. Unlike the 
NDVI-based indices, CCI performed more consistently across sites, and 
lacked sites with negative CCI-GPP correlations. Vegetation indices 
performed better at the Northern forests and Taiga than Northwestern 
forests mountains, Eastern temperate forests, Marine west coast forests, 
and Temperate Sierras. Relationships between GPP and CCI and be
tween GPP and NIRv were stronger than those between GPP and NDVI in 
Marine west coast forests. NDVI based indices, including NIRv, were 

Fig. 4. Relationships between GPP and different vegetation indices for different seasonal periods, illustrating effects of snow-cover (red points) and snow-melt 
(orange points) on the correlation between GPP and vegetation indices. Data were collected from the CA-Qfo flux site in 2009 and 2010. Snow-melting periods 
were estimated based on Phenocam imagery. 
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poorly correlated with GPP in the Temperate sierras. The largest vari
ations in the GPP – VI relationships occurred in the Northwestern 
forested mountains, which covered four different climate classes (Fig. 7 
and Table 1). 

We further explored how relationships between GPP and snow cor
rected vegetation indices varied among climate classes within Eastern 
temperate forest and Northwestern forested mountains, both of which 
cover multiple climate classes (Table 1 and Fig. 8). All vegetation indices 
were able to track GPP in warm summer continental (Dfb) and dry 
continental (Dsc) sites. Relationship between GPP and CCI was stronger 
than those between GPP and NDVI-based indices in Mediterranean sites 
with dry and warm summer (Csb). The relationship between GPP and 
NDVI based indices was stronger than that between GPP and CCI in 
subarctic (Dfc) Northwestern forested mountains. As in the comparison 
across ecoregions (Fig. 7), CCI performed more consistently across 
climate classes than NDVI-based indices, and it did not exhibit any sites 
with negative CCI-GPP correlations (Fig. 8). 

4. Discussion 

Our study combined flux data and MODIS-derived vegetation indices 
over 47 North American evergreen forest sites to evaluate the relation
ships between GPP and vegetation indices, and the confounding effects 
of snow on these relationships. We greatly expanded the number of sites 
compared to earlier CCI studies (Rahman et al., 2004; Drolet et al., 2008; 
Gamon et al., 2016; Middleton et al., 2016). We also extended the 
analysis well beyond boreal forests to many evergreens across ecor
egions and climate classes to test the application of CCI and other VIs in 

tracking GPP in evergreen forests across a much wider geographic range 
than most previous studies. Our results revealed that reflected light from 
snow strongly influenced all vegetation indices, and their correlations 
with GPP. Prior to snow correction, the NDVI-based indices performed 
better than CCI in monitoring GPP of evergreen forests, but this was 
partly due to artifacts of snow, which affected VIs unevenly. After snow 
correction, the correlation between CCI and GPP was largely enhanced. 
Our results also showed that correlations between GPP and CCI vs. 
NDVI-based indices are driven by different factors in the light use effi
ciency model. The strong performance of CCI was presumably due to its 
sensitivity to seasonal pigment changes (Gamon et al., 2016; Wong et al., 
2020), while NDVI-based indices were more sensitive to APAR and leaf 
development of deciduous components in the evergreen forest. We also 
found that the relationship between GPP and vegetation indices varied 
among ecoregions and climate classes, presumably due to the varying 
constraints on GPP and stand composition across biomes. 

4.1. Effects of snow cover and snow melting on MODIS VIs 

Different vegetation indices were affected differently by snow cover, 
indicating contradictory and confounding effects of snow on these 
indices (Figs. 4 and 5). For example, snow tended to exaggerate the 
seasonal trends in NDVI, kNDVI and NIRv, but suppress the seasonal 
trends in CCI. Although snow increased reflectance across the whole 
visible (VIS) - near infrared (NIR) region, it decreased the difference 
between VIS and NIR bands and altered reflectance values of VIS 
wavelengths, leading to abrupt decreases in NDVI-based indices and an 
increase in CCI as has also been reported in a recent experimental study 
(Wang et al., 2023). Without accounting for snow cover, NDVI-based 
indices could suggest (incorrectly) a rapid loss and relative sudden 
emergence of green foliage in the winter for evergreens due to changes 
in snow cover alone. Being inversely impacted by snow (relative to 
NDVI), CCI increases due to snow in wintertime that are comparable to 
growing season maxima (Fig. 2) could erroneously suggest a sudden 
“turning on” of photosynthesis that in the middle of winter for ever
greens. Thus, snow increased the seasonal variation in NDVI-based 
indices, exaggerating the correlation between GPP and NDVI. By 
contrast, snow decreased the seasonal variation in CCI, greatly reducing 
the correlation with GPP. 

Eliminating the contamination of vegetation indices due to snow 
revealed the true baseline of the vegetation response and enabled 
improved evaluation of seasonal patterns associated with biological 
changes affecting GPP (Huemmrich et al., 2021). Snow – and hence 
snow correction – had a particularly strong influence in the early spring 
when rapid changes occurred in both GPP and snow cover (Fig. 2). In 
accord with previous studies (Eklundh et al., 2011; Springer et al., 
2017), the largest and fastest NDVI increases happened during snow 
melt (Figs. 2 and 4). This effect was an artifact of snow melt, and not a 
direct effect of vegetation phenology or physiological change. This 
documentation of severe artifacts in the VI-GPP relationships has 
important implications for attempts to monitor long-term GPP trends 
from satellites, as most studies that use reflectance-based vegetation 
indices do not account for snow cover, and a large part of the signal 
falsely attributed to GPP trends can be an artifact of changing snow 
cover (Gamon et al., 2013; Myers-Smith et al., 2020; Shen et al., 2014). 

4.2. VIs provided complementary information about photosynthetic 
phenology 

The complementarity hypothesis (Gamon 2015; Gamon et al., 2016) 
argues that different vegetation indices provide complementary infor
mation about plant photosynthetic activities. NDVI follows canopy 
development (mainly in annual and deciduous plants) while CCI is 
sensitive to seasonal pigment changes particularly the relative levels of 
chlorophyll and carotenoid pigments (Gamon et al., 2016; Wong et al., 
2020), both of which can have an important influence on GPP (Springer 

Fig. 5. Snow removal affected the correlations (Pearson correlation co
efficients) between daily GPP and vegetation indices (NDVI, CCI, NIRv, and 
kNDVI). Data from all the 47 sites were used and correlation was calculated for 
each site separately. The line in the middle of each box indicates the median 
value. The lower and upper hinges correspond to the first and third quartiles 
(the 25th and 75th percentiles) and data beyond 1.5 times of distance between 
the first and third quartiles from the lower and upper hinges are plotted as 
individual points. The medians are roughly significantly different at a 95% 
confidence level, if the notches do not overlap (McGill et al., 1978). 
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et al., 2017; Wong et al., 2020). Carotenoid pigments often serve as 
photoprotective and photoregulatory pigments. Presumably, because 
carotenoid pigments serve a particularly strong photoprotective role in 
evergreens, CCI is also more sensitive to LUE than the NDVI-based 
indices (Fig. 6). A history of research has shown that seasonal shifts in 
photosynthetic and photoregulatory pigments are important in regu
lating seasonal photosynthetic activity, particularly under extreme 
temperatures (Wong and Gamon, 2015; Magney et al., 2019; Wal
ter-McNeill et al., 2021). The balance of these physiological and struc
tural factors and their influence on GPP changes with vegetation type 
(Gamon, 2015; Garbulsky et al., 2011), and this affects the relationships 
between GPP and vegetation indices in different ways depending upon 
the index and the particular biome. 

The weak correlation between GPP and NDVI for most of the ever
green forests tested is undoubtedly due to NDVI’s sensitivity to green 
canopy structure (which has little seasonal change in evergreens) along 
with its insensitivity to subtle changes in physiology associated with 
pigments and seasonal photosynthetic capacity change in evergreens. 
Because CCI is more sensitive to the seasonal dynamics in pigments, a 
good indicator of the regulation of photosynthetic light reactions, it 
appears to be a more sensitive indicator of LUE and evergreen GPP 
phenology than greenness-based indices like NDVI, as has previously 
been reported (Gamon et al., 2016; Springer et al., 2017). In contrast, 
greenness-based indices like NDVI can provide good estimates of radi
ation absorbed by green canopy material (APAR) and are sensitive to the 
contributions of leaf development and senescence to overall optical 

Fig. 6. Correlations (Pearson correlation coefficient) between GPP, LUE, and APAR and snow corrected vegetation indices. Size and color of circles indicate the 
Pearson correlation coefficient. Sites listed on the left were sorted by latitude (from North to South). Ecoregions and climate class of each site are summarized in 
Table 1. Correlations between NDVI and APAR and LUE were not calculated, because NDVI was used to derive APAR and thus LUE. 
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signals in annual and deciduous species and understory that could in
fluence the reflectance in northern sites (Ikawa et al., 2015), and thus of 
potential photosynthetic activity (Gamon et al., 1995, 2016; Wong et al., 
2020). CCI also had strong correlations with APAR (Fig. 6). This might 
be because CCI was sensitive to both adjustment of pigments in the 
spring and fall as well as to canopy structural change such as needle 
expansion and shoot elongation (Springer et al., 2017). To track actual 
photosynthetic activity (and GPP), additional pigment information 
provided by CCI appears to be very useful, and this can help explain the 
higher correlation between CCI and LUE relative to the other vegetation 
indices (Fig. 6). Combining CCI and NIRv by assuming that these two 
indices may represent light use efficiency and APAR in the conventional 
LUE model respectively, could lead to stronger relationship with GPP 
than using each index alone (Wong et al., 2022). We calculated an index 
by multiplying normalized CCI (to the [0, 1] range to eliminate the ef
fects of negative values) with NIRv, which led to a slight increase in the 
correlation with GPP (Figure S7 in the supplemental materials), sug
gesting that this may be a promising direction for future study. In 
addition, correction for sun-view geometry and shadow fraction in the 
MODIS data, which were not attempted here, may further improve the 
relationship between CCI and GPP (Drolet et al., 2008; Middleton et al., 
2016). 

4.3. GPP-VI relationships varied among ecoregions 

The distribution and growth of evergreen forests are influenced by 
climate (temperature and precipitation), and these effects vary among 

ecoregions. Evergreen forests can also vary in the proportion of annual 
and deciduous species present, which can vary with disturbance and 
succession (Wells et al., 2020). Evergreen and deciduous species also 
differ in their optical responses to snow and their GPP phenology (Wang 
et al., 2023). These factors undoubtedly contribute to the geographic 
variation in the relationships between GPP and VIs (Fig. 7). Forest 
growth and distribution are limited by long winters with cold temper
ature and short daylength for taiga, northern forests and subarctic sites 
in the northwest forested mountains (Seyednasrollah et al., 2021). Be
sides being affected by temperature and light regime, forest distribution 
and growth are affected by soil hydrology. Forest growth can be limited 
by the water holding capacity of sandy soils, such as those from the 
Great Lakes region or eastern North America, which quickly become dry 
during periods of drought (Arain et al., 2022; Arain and Restrepo-
Coupe, 2005) and some of the jack pine (Pinus banksiana) forests in the 
boreal region (Dietrich et al., 2016; McCollum and Ibáñez, 2020). In 
regions with pronounced seasonal GPP patterns, including taiga, 
northern forests and other subarctic sites, all four vegetation indices 
were able to track seasonal GPP change (Figs. 6 and 7). The relatively 
low correlation between vegetation indices and GPP for two east coastal 
forest sites (US-Ho1 and US-Ho2) was due to limited GPP data (mainly in 
the fall) caused by failed daytime partitioning for most of the data. 
Strong relationships between VIs and GPP derived from nighttime par
titioning were achieved for these two sites (Figure S4 in the supple
mental materials). This indicates that flux partitioning method can also 
be a source of error affecting GPP-VI relationships. 

The marine west coast forest sites (CA-Ca2 and CA-Ca3) are located 

Fig. 7. Correlations between GPP and snow corrected vegetation indices (NDVI, CCI, NIRv, and kNDVI) by Level-1 ecoregions. The line in the middle of each box 
indicates the median value. The lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles). 
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in the wettest climate in North America and are dominated by dense 
Douglas-fir, hemlock and cedar. In this case, the contribution of un
derstory deciduous plants to reflectance can often be negligible, except 
following fire, harvesting or in early forest succession when annuals or 
deciduous vegetation species dominate (Humphreys et al., 2006). Thus, 
CCI was able to track the GPP phenology for these sites due to its 
sensitivity to seasonal pigment changes while NDVI and kNDVI exhibi
ted little sensitivity to seasonal changing GPP (Fig. 6, Gamon et al., 
2016). 

For Temperate Sierras (US-Fmf and US-Fuf) and some other Medi
terranean sites (US-Me2, US-Me3, US-Me5, and US-Me6), where the 
climate features dry and warm summer and wet winter, strong corre
lations were only found between GPP and CCI, with all the NDVI based 
indices failing to track GPP phenology (Fig. 7). In some Mediterranean 
sites, GPP is restricted by summer drought and associated 

photosynthetic downregulation in hot summer conditions (Goulden 
et al., 2012; Kelly and Goulden, 2016), and vary with forest manage
ment and disturbance, such as fire treatment (Kolb et al., 2013). In 
accordance with previous study at sites US-Fmf and US-Fuf (Kolb et al., 
2013), in a year with late summer drought, NDVI based indices showed 
little capability to monitor the overall seasonal GPP change (Fig. 6). 
Moderate correlation (r = 0.5) was found between GPP and CCI among 
all the years and management treatments, perhaps because of the 
additional sensitivity of CCI to pigment signals indicating periods of 
photosynthetic (GPP) downregulation (Fig. 6). A large body of literature 
suggests that carotenoid-based indices may be responsive to 
drought-induced declines in photosynthetic activity (Suárez et al., 2008, 
2010; Zarco-Tejada et al., 2012), supporting the good correlation be
tween CCI and GPP in these systems. 

Fig. 8. Correlations between GPP and snow corrected vegetation indices (NDVI, CCI, NIRv, and kNDVI) by Köppen Climate Class within Eastern temperate forest and 
Northwestern forested mountains. The line in the middle of each box indicates the median value. The lower and upper hinges correspond to the first and third 
quartiles (the 25th and 75th percentiles). 
Cfa: Humid subtropical (mild with no dry season, hot summer); Dfb: Warm summer continental (significant precipitation in all seasons); Csa: Mediterranean (mild 
with dry, hot summer); Csb: Mediterranean (mild with dry, warm summer); Dfc: Subarctic (severe winter, no dry season, cool summer); Dsc: Dry continental 
(cool summer). 
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4.4. Disturbance impacts 

Besides climate effects, the overall ecosystem photosynthesis and 
carbon uptake of forests are affected by disturbance, such as drought, 
fire and pests (Amiro et al., 2010; Kurz et al., 2013; Xu et al., 2020). Such 
disturbances are becoming more frequent in many regions, altering the 
successional state of forests, and affecting both the distribution of 
vegetation types and presumably the links between vegetation indices 
and GPP (Zhang et al., 2016; Sarmah et al., 2021). In this study, NIRv 
exhibited the strongest correlation with GPP for the site CA-LP1, which 
is a lodgepole pine (Pinus contorta) stand that has been severely affected 
by mountain pine beetle (MPB, Dendroctonus, ponderosae) since the early 
2000s. This is likely due to NIRv’s sensitivity to green canopy structure. 
While most of the mature pine canopy was killed, residual vegetation, 
including younger conifer trees and broadleaf dominated understory, 
contributed to the overall ecosystem net photosynthesis (Bowler et al., 
2012; Emmel et al., 2014). However, the yellow to red dead tree foliage 
that was caused by beetle attack can, for a few years post-disturbance, 
affect the vegetation indices and presumably influence the correlation 
between GPP and CCI at this site. A systematic evaluation of impacts of 
disturbance on relationships between GPP and vegetation indices is 
beyond the scope of this study, but further attention is required when 
estimating GPP using vegetation indices for disturbance influenced sites. 

4.5. Next generation satellites 

The results of this study indicate that combinations of structurally- 
based (NDVI-based) with pigment-based (e.g. CCI) indices can provide 
improved estimation of GPP, as has been amply demonstrated from a 
history of proximal remote sensing. Such combined approaches would 
benefit from additional attention to snow correction as demonstrated 
here. However, due to the orbital drift of Terra and Aqua satellites, the 
global CCI observation capability derived from MODIS data will likely 
be limited at some point in the near future. The Visible Infrared Imaging 
Radiometer Suite (VIIRS) instrument flying on the Suomi National Polar- 
orbiting Partnership satellite, intended to be the continuation of MODIS, 
did not retain the 531 nm band needed for calculation of CCI. Current 
hyperspectral satellites such as PRISMA (Cogliati et al., 2021; Stefano 
et al., 2013) and EnMAP (Guanter et al., 2015) do not have enough 
temporal coverage or are not free for public access. One option is the 
Second-Generation Global Imager (SGLI) on-board on the Global Change 
Observation Mission – Climate (GCOM-C), which provides surface 
reflectance at 531 nm (Akitsu and Nasahara, 2022). Yet to be tested, 
SGLI-based measurements might be able to provide the ability to detect 
pigment-based GPP estimations through global PRI and CCI products 
until new hyperspectral satellites, such as NASA Surface Biology and 
Geology (Cawse-Nicholson et al., 2021) and ESA Fluorescence Explorer 
(Drusch et al., 2017) missions, are launched. Thus, it is likely that gaps in 
global coverage of critical VIs will occur in the near future, affecting our 
ability to assess GPP from reflectance-based methods due to limited 
satellite coverage. 

5. Conclusions 

The satellite-derived vegetation indices commonly used to monitor 
terrestrial ecosystem photosynthesis phenology are highly sensitive to 
snow cover. Consequently, the performance of these indices in tracking 
global GPP phenology is confounded by snow, a topic which has 
received only limited attention (e.g., Myers-Smith et al., 2020) despite 
the heavy use of vegetation indices in global GPP studies. During the 
spring transition, snow melt greatly exaggerated the apparent correla
tion between GPP and NDVI-based vegetation indices while reversing 
the correlation between GPP and CCI. After snow removal, strong re
lationships were found between GPP and CCI and NIRv, with slightly 
higher correlations between GPP and CCI for most of the sites, pre
sumably due to the sensitivity of CCI to seasonal pigment change 

associated with changing photosynthetic activity and photoprotection. 
The relationship between GPP and vegetation indices varied among 
geographical regions, ecoregions and climate classes. The GPP-VI rela
tionship was likely further affected by disturbance history and the exact 
composition of functionally distinct vegetation types (e.g. annuals, de
ciduous and evergreen). For regions with clear seasonal GPP patterns, all 
vegetation indices were able to track GPP phenology to some degree. 
Among all the ecoregions (climate classes), the strongest relationships 
between GPP and vegetation indices were found for the subarctic sites, 
while weak relationships between were found for the Mediterranean 
sites, where daily GPP exhibited moderate correlation with CCI. The 
large snow cover artifacts and complementary vegetation index re
sponses reported here should be considered in any large-scale studies of 
GPP using optical satellites (e.g. MODIS) and illustrate the limitations of 
deriving global GPP estimates based on any single vegetation index. 
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Hmimina, G., Dufrêne, E., Pontailler, J.Y., Delpierre, N., Aubinet, M., Caquet, B., de 
Grandcourt, A., Burban, B., Flechard, C., Granier, A., Gross, P., Heinesch, B., 
Longdoz, B., Moureaux, C., Ourcival, J.M., Rambal, S., Saint André, L., Soudani, K., 
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Suárez, L., Zarco-Tejada, P.J., González-Dugo, V., Berni, J., Sagardoy, R., Morales, F., 
Fereres, E., 2010. Detecting water stress effects on fruit quality in orchards with 
time-series PRI airborne imagery. Remote Sens. Environ. 114 (2), 286–298. https:// 
doi.org/10.1016/j.rse.2009.09.006. 

Thompson, J.R., Carpenter, D.N., Cogbill, C.V., Foster, D.R., 2013. Four centuries of 
change in Northeastern United States Forests. PLoS One 8. https://doi.org/10.1371/ 
journal.pone.0072540. 

Turcotte, A., Morin, H., Krause, C., Deslauriers, A., Thibeault-Martel, M., 2009. The 
timing of spring rehydration and its relation with the onset of wood formation in 
black spruce. Agric. For. Meteorol. 149, 1403–1409. https://doi.org/10.1016/j. 
agrformet.2009.03.010. 

Ueyama M., Iwata H., Harazono Y. (2023), AmeriFlux BASE US-Uaf University of Alaska, 
Fairbanks, Ver. 11-5, AmeriFlux AMP, (Dataset). 10.17190/AMF/1480322. 

Verhoeven, A., 2014. Sustained energy dissipation in winter evergreens. New Phytol. 
201, 57–65. https://doi.org/10.1111/nph.12466. 

Walter-McNeill, A., Garcia, M.A., Logan, B.A., Bombard, D.M., Reblin, J.S., Lopez, S., 
Southwick, C.D., Sparrow, E.L., Bowling, D.R., 2021. Wide variation of winter- 
induced sustained thermal energy dissipation in conifers: a common-garden study. 
Oecologia 197, 589–598. https://doi.org/10.1007/s00442-021-05038-y. 

Wang, X., Wang, J., Che, T., Huang, X., Hao, X., Li, H., 2018. Snow cover mapping for 
complex mountainous forested environments based on a multi-index technique. IEEE 
J. Sel. Top. Appl. Earth Obs. Remote Sens. 11, 1433–1441. https://doi.org/10.1109/ 
JSTARS.2018.2810094. 

Wang, R., Gamon, J.A., Emmerton, C.A., Springer, K.R., Yu, R., Hmimina, G., 2020. 
Detecting intra- and inter-annual variability in gross primary productivity of a North 
American grassland using MODIS MAIAC data. Agric. For. Meteorol. 281, 107859 
https://doi.org/10.1016/j.agrformet.2019.107859. 

Wang, R., Springer, K.R., Gamon, J.A., 2023. Confounding effects of snow cover on 
remotely sensed vegetation indices of evergreen and deciduous trees: an 
experimental study. Global Change Biology. In press.  

Wells, J.V., Dawson, N., Culver, N., Reid, F.A., Morgan Siegers, S., 2020. The state of 
conservation in North America’s Boreal Forest: issues and opportunities. Front. For. 
Glob. Change 3 (July), 1–18. https://doi.org/10.3389/ffgc.2020.00090. 

Wharton S. (2016), AmeriFlux BASE US-Wrc Wind River Crane Site, Ver. 8-1, AmeriFlux 
AMP, (Dataset). 10.17190/AMF/1246114. 

White, J.C., Wulder, M.A., Hermosilla, T., Coops, N.C., Hobart, G.W., 2017. A nationwide 
annual characterization of 25 years of forest disturbance and recovery for Canada 
using Landsat time series. Remote Sens. Environ. 194, 303–321. https://doi.org/ 
10.1016/j.rse.2017.03.035. 

Williams, A.P., Allen, C.D., Macalady, A.K., Griffin, D., Woodhouse, C.A., Meko, D.M., 
Swetnam, T.W., Rauscher, S.A., Seager, R., Grissino-Mayer, H.D., Dean, J.S., Cook, E. 
R., Gangodagamage, C., Cai, M., Mcdowell, N.G., 2013. Temperature as a potent 
driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 
292–297. https://doi.org/10.1038/nclimate1693. 

Wong, C.Y.S., Gamon, J.A., 2015. The photochemical reflectance index provides an 
optical indicator of spring photosynthetic activation in evergreen conifers. New 
Phytol. 206, 196–208. https://doi.org/10.1111/nph.13251. 

Wong, C.Y.S., D’Odorico, P., Arain, M.A., Ensminger, I., 2020. Tracking the phenology of 
photosynthesis using carotenoid-sensitive and near-infrared reflectance vegetation 
indices in a temperate evergreen and mixed deciduous forest. New Phytol. 226, 
1682–1695. https://doi.org/10.1111/nph.16479. 

Wong, C.Y.S., Mercado, L.M., Arain, M.A., Ensminger, I., 2022. Remotely sensed 
carotenoid dynamics improve modelling photosynthetic phenology in conifer and 
deciduous forests. Agric. For. Meteorol. 321, 108977 https://doi.org/10.1016/j. 
agrformet.2022.108977. 

Wutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J., Sickel, K., Šigut, L., 
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