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Key Points:
•  Random forest models trained on 

FLUXNET-CH4 methane fluxes 
reproduced spatiotemporal patterns 
in extra-tropical wetlands (R 2: 
0.59–0.64)

•  Globally upscaled annual wetland 
methane emissions (146 TgCH4 y −1) 
overlapped with land surface and 
inversion model ensemble estimates

•  Humid/monsoon tropics dominate 
upscaled wetland methane emissions 
(∼68%) and uncertainties (∼78%) 
due to limited FLUXNET-CH4 site 
coverage
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1. Introduction
The post-industrial rise in atmospheric methane (CH4) concentrations has had a large climate warming effect, 
60% the size of that for carbon dioxide (CO2) (IPCC,  2021). The short atmospheric lifetime of CH4 also 
promises relatively fast climate change mitigation effects following CH4 emissions reductions, rather than 
century-or-more timescales for CO2 reductions (Abernethy et al., 2021; Turner et al., 2019). However, current 
emissions trajectories more closely track high emissions scenarios (Zhang et  al.,  2023). Since 2014, there 
has been an accelerating increase in the CH4 growth rate that reached a record level in 2022, at 18.2 ppb y −1 
(Lan et al., 2023), and these increases could continue as global temperatures rise (Bansal et al., 2023; Zhang 
et al., 2017).

Large uncertainties around total (8%–39%) and individual CH4 sources (Table 1) prevent CH4 budget closure at 
regional-to-global scales. Better constrained CH4 budgets are needed to more accurately attribute and mitigate the 
sources causing the accelerating rise in CH4 emissions (Nisbet et al., 2022). Improving wetland CH4 emissions 
estimates will help constrain the global CH4 budget as wetlands comprise both the largest natural CH4 emissions 
source (20%–30% of total emissions) and the second largest uncertainty in the CH4 budget (Saunois et al., 2020). 

Mission Area, Menlo Park, CA, USA, 50Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, 
MD, USA, 51Woods Institute for the Environment, Stanford University, Stanford, CA, USA, 52Precourt Institute for Energy, 
Stanford University, Stanford, CA, USA

Abstract Wetlands are responsible for 20%–31% of global methane (CH4) emissions and account for 
a large source of uncertainty in the global CH4 budget. Data-driven upscaling of CH4 fluxes from eddy 
covariance measurements can provide new and independent bottom-up estimates of wetland CH4 emissions. 
Here, we develop a six-predictor random forest upscaling model (UpCH4), trained on 119 site-years of eddy 
covariance  CH4 flux data from 43 freshwater wetland sites in the FLUXNET-CH4 Community Product. 
Network patterns in site-level annual means and mean seasonal cycles of CH4 fluxes were reproduced 
accurately in tundra, boreal, and temperate regions (Nash-Sutcliffe Efficiency ∼0.52–0.63 and 0.53). UpCH4 
estimated annual global wetland CH4 emissions of 146 ± 43 TgCH4 y −1 for 2001–2018 which agrees closely 
with current bottom-up land surface models (102–181 TgCH4 y −1) and overlaps with top-down atmospheric 
inversion models (155–200 TgCH4 y −1). However, UpCH4 diverged from both types of models in the spatial 
pattern and seasonal dynamics of tropical wetland emissions. We conclude that upscaling of eddy covariance 
CH4 fluxes has the potential to produce realistic extra-tropical wetland CH4 emissions estimates which will 
improve with more flux data. To reduce uncertainty in upscaled estimates, researchers could prioritize new 
wetland flux sites along humid-to-arid tropical climate gradients, from major rainforest basins (Congo, 
Amazon, and SE Asia), into monsoon (Bangladesh and India) and savannah regions (African Sahel) and be 
paired with improved knowledge of wetland extent seasonal dynamics in these regions. The monthly wetland 
methane products gridded at 0.25° from UpCH4 are available via ORNL DAAC (https://doi.org/10.3334/
ORNLDAAC/2253).

Plain Language Summary Wetlands account for a large share of global methane emissions to the 
atmosphere, but current estimates vary widely in magnitude (∼30% uncertainty on annual global emissions) 
and spatial distribution, with diverging predictions for tropical rice growing (e.g., Bengal basin), rainforest 
(e.g., Amazon basin), and floodplain savannah (e.g., Sudd) regions. Wetland methane model estimates could 
be improved by increased use of land surface methane flux data. Upscaling approaches use flux data collected 
across globally distributed measurement networks in a machine learning framework to extrapolate fluxes 
in space and time. Here, we train and evaluate a methane upscaling model (UpCH4) and use it to generate 
monthly, globally gridded wetland methane emissions estimates for 2001–2018. The UpCH4 model uses only 
six predictor variables among which temperature is dominant. Global annual methane emissions estimates 
and associated uncertainty ranges from upscaling fall within state-of-the-art model ensemble estimates 
from the Global Carbon Project (GCP) methane budget. In some tropical regions, the spatial pattern of 
UpCH4 emissions diverged from GCP predictions, however, inclusion of flux measurements from additional 
ground-based sites, together with refined maps of tropical wetlands extent, could reduce these prediction 
uncertainties.
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Wetlands, as defined here, include both seasonally and permanently inundated soils that are vegetated includ-
ing riparian and floodplain forests, inland marsh systems, and peat-forming wetlands (peatlands) but exclude 
rice agriculture, tidal and non-vegetated waterbodies such as ponds, lakes, streams, rivers, and estuaries (Zhang 
et al., 2021).

Current methods to estimate global wetland CH4 emissions generally fall into one of two approaches: top-down 
(TD) atmospheric observation-based inversions and bottom-up (BU) land surface models. Although both 
approaches involve state-of-the-art methods, emissions estimates vary significantly within and between the two 
approaches (Saunois et al., 2020). For the decade 2008–2017, a comprehensive TD model ensemble, compiled  as 
part of the Global Carbon Project (GCP) methane budget activity, estimated wetland emissions of 159–200 (mean 
181) TgCH4 yr −1. TD inversions use approaches such as Bayesian inference or ensemble Kalman filters to esti-
mate the (posterior) wetland emissions required to reproduce in-situ and satellite atmospheric CH4 concentration 
retrievals. Since observations are limited, wetland source attribution strongly depends on prior assumptions as 
additional sources of information, constraining sectoral contributions (i.e., natural, industrial, agricultural and 
waste emissions) in space and time (Jacob et  al.,  2022). Considerable variability exists between TD models, 
primarily due to differences in assumptions and whether satellite retrievals are included as constraints (Kirschke 
et al., 2013; Saunois et al., 2020).

In contrast to TD models, BU model estimates are not constrained by atmospheric CH4 concentration data 
and attempt to directly represent wetland CH4 fluxes and underlying flux processes with varying complexity 
(Riley et al., 2011; Ueyama et al., 2023). For the same decade (2008–2017), the GCP's 13-member BU model 
ensemble estimated emissions of 102–182 (mean 149) TgCH4 yr −1, ∼20% lower than the TD ensemble mean 
(Saunois  et al., 2020). The widespread observed among BU models arises from differences in model param-
eterization, which is informed by process knowledge and literature estimates of parameter values and some-
times by calibration to observed wetland CH4 fluxes at a limited number of sites (e.g., 3 northern wetlands for 

Source sector Ensemble
Average emissions [ensemble range] 

(TgCH4 y −1)
Absolute range 

(TgCH4 y −1)
Normalized 

range

Total BU 737 [594–881] 287 39%

TD 576 [550–594] 44 8%

BU—TD 161

Natural wetlands BU 149 [102–182] 80 54%

TD 181 [159–200] 41 23%

BU - TD −32

Other natural BU 222 [143–306] 163 73%

TD 37 [21–50] 29 78%

BU—TD 185

Agriculture and waste BU 206 [191–223] 32 16%

TD 217 [207–240] 33 15%

BU—TD −11

Fossil fuels BU 128 [113–154] 41 32%

TD 111 [81–131] 50 45%

BU—TD 17

Biomass and biofuel burning BU 30 [26–40] 14 47%

TD 30 [22–36] 14 47%

BU—TD 0

Note. “Other natural” combines open (non-vegetated) freshwaters, geological (on and offshore), wild animal, termite, 
wildfire, permafrost, and biological oceanic sources. Normalized ranges are reported as absolute ranges divided by ensemble 
average emissions.

Table 1 
Natural and Anthropogenic Methane Emissions by Source Sector for the Decade 2008–2017 From Global Carbon Project 
Top-Down (TD) and Bottom-Up (BU) Model Ensembles (Saunois et al., 2020)
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Wetland-DNDC in Zhang et al., 2002). However, Chang et al.  (2021) showed a large variability in CH4 flux 
temperature dependency across a network of eddy covariance tower sites (FLUXNET-CH4; Delwiche et al., 2021; 
Knox et al., 2019), indicating that upscaling from few sites is likely to introduce errors during global extrapola-
tion. To date, process-based models have yet to use networked data, for instance FLUXNET-CH4, for multi-site 
calibration, in part because this approach is more technically challenging than for machine learning models. 
Equally large uncertainties (∼50% of total uncertainty) are introduced when BU models simulate independent 
wetland extents in prognostic runs versus using prescribed global wetland extents in diagnostic runs (Melton 
et al., 2013). Notably, the substantial GCP BU spread (±30%-50% of ensemble mean emissions) was observed 
even in diagnostic model runs where all models were prescribed a common Wetland Area and Dynamics for 
Methane Modeling (WAD2M) wetland extent (Zhang et al., 2021), underscoring the need to reduce wetland CH4 
flux uncertainties as well as wetland extent uncertainties.

No global benchmark data set exists to favor or falsify, with a strong degree of confidence, any BU or TD 
model (Saunois et  al.,  2020). Insights about model parameterization and sources of uncertainty can only be 
gained at present via model intercomparisons, such as the BU Wetland CH4 Inter-Comparison of Models Project 
(WETCHIMP) activity (Melton et al., 2013) and the TD Wetland CH4 emission and uncertainty ensemble data 
set for Atmospheric Chemistry and Transport modeling (WetCHARTS) activity (Bloom et al., 2017), the GCP 
wetland CH4 synthesis (Poulter et al., 2017), by regional scale evaluation of converging or diverging TD and BU 
estimates (Stavert et al., 2021; example in Figure 1), or by comparison to satellite retrievals (Parker et al., 2018). 
Independent estimates of global wetland CH4 emissions, incorporating new data for calibration and model 
constraints, and implementing new modeling approaches, such as machine learning algorithms, are emerging 
alternatives for refining models and reducing uncertainties around wetland CH4 sources (Saunois et al., 2020).

One data stream that can improve wetland CH4 models and global emission estimates is the growing availa-
bility of CH4 fluxes measured near the land surface. In situ eddy covariance flux towers provide long-term, 
semi-automated, and quasi-continuous fluxes at ecosystem scales (<1 km 2) with minimal disturbance to soils or 
canopy structure/function (Baldocchi, 2014; Chu et al., 2021). Although BU models have been parameterized 
using CH4 flux data at individual sites, network CH4 data has not been fully utilized. Since the late-1990s, FLUX-
NET has provided standardized CO2 flux data measured using eddy covariance across hundreds of locations 
around the world, enabling independent benchmarking of satellite measurements and Earth system models (Jung 
et al., 2020; Pastorello et al., 2020). Upscaling is a workflow combining statistical models and data to transfer 
information across scales, often using machine learning, and has been used by projects such as FLUXCOM to 
extrapolate FLUXNET data from 224 sites (∼850 site years) and predict global terrestrial ecosystem carbon and 
energy fluxes (Bodesheim et al., 2018; Jung et al., 2020; Tramontana et al., 2016). The FLUXNET-CH4 data set 
now provides similar opportunities to refine model parameterization and generate independent, data-driven esti-
mates of regional-to-global CH4 emissions (Chang et al., 2021; Delwiche et al., 2021; Knox et al., 2019). Peltola 
et al. (2019) independently acquired eddy covariance data from 25 high-latitude sites and developed a wetland 
CH4 flux upscaling workflow to predict monthly, regional (>45°N) wetland CH4 emissions for 2012–2013. 
Annual emissions of 31–38 TgCH4 y −1 agreed well with previous bottom-up estimates (e.g., Chen et al., 2015; 
Treat et al., 2018; Zhang et al., 2017) but were higher than those of top-down estimates (23–28 TgCH4 y −1) for 
the region (e.g., Bruhwiler et al., 2014; Spahni et al., 2011). Peltola et al. (2019) thus demonstrated that upscaling 
estimates from eddy covariance data could produce plausible CH4 fluxes at regional scales. To date, however, 
no upscaling project has taken advantage of the full FLUXNET-CH4 site network to make and evaluate global 
wetland CH4 emissions predictions.

Here, we develop a wetland CH4 upscaling workflow (UpCH4) that combines FLUXNET-CH4 and globally 
gridded predictor data to train random forest model ensembles, including validation and test routines optimized 
for spatial prediction applications. Given that surface flux measurement may networks take decades to grow, our 
first goal is to robustly evaluate the ability of machine learning models to extrapolate beyond training conditions 
in space and time. We then use this CH4 flux upscaling workflow (UpCH4) to predict wetland CH4 emissions 
globally and compare them to current top-down and bottom-up model estimates. Given knowledge of model 
structure and network coverage, our second goal is to identify regions of convergence and diagnose regions of 
divergence between UpCH4 and existing estimates. Finally, we use knowledge of the model structure to conduct 
a FLUXNET-CH4 network dissimilarity analysis with the goal of informing strategic improvements in eddy 
covariance site coverage.
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2. Methods
2.1. Predictive Modeling

2.1.1. Eddy Covariance CH4 Flux Data

UpCH4 was designed to predict CH4 fluxes globally at inundated and non-inundated (i.e., shallow water table) 
freshwater vegetated wetlands. Forty-five natural and restored freshwater wetland sites from the FLUXNET-CH4 
database qualified for model training (Delwiche et al., 2021). Two sites (RU-VrK and SE-St1) were excluded 
after quality control filtering and 1 year of data was excluded from a restored wetland site (US-Sne; Table 2) that 
had not yet developed vegetation cover. One site (DE-Hte) is coastal but was freshwater dominated during the 
observation period. The final eddy covariance tower data set consisted of 43 freshwater wetland sites covering 

Figure 1. (a) Large regional discrepancies exist between (b) bottom-up (BU) and (c) top-down (TD) model estimates of 
wetland CH4 emissions, in addition to different global totals. Mean daily natural wetland CH4 emissions for 2010–2017 
estimated from a 17-member TD ensemble are subtracted from the mean from a 13-member BU process model ensemble 
(Saunois et al., 2020). High northern latitude bounding boxes correspond to locations of Hudson Bay Lowland (left) and West 
Siberian Lowland (right) wetland complexes.
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http://sites.fluxdata.org/US-Tw5/
http://sites.fluxdata.org/US-NC4/
http://sites.fluxdata.org/US-NGC/
http://sites.fluxdata.org/US-ORv/
http://sites.fluxdata.org/US-OWC/
http://sites.fluxdata.org/US-WPT/
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bog (8), fen (8), marsh (10), swamp (6), and wet tundra (11) wetland classes and distributed across Arctic-boreal 
(20), temperate (16), and (sub)tropical (7) climate zones.

Weekly mean CH4 fluxes were computed from half-hourly FLUXNET-CH4 Version 1.0 fluxes, which are availa-
ble as a standardized gap-filled product (Delwiche et al., 2021). Although current wetland CH4 emission products 
are resolved at monthly timesteps, a finer-resolution (here, weekly) increases training data size and helps capture 
sub-monthly functional dependencies between predictors and flux (Jung et al., 2020; Tramontana et al., 2016). 
Weekly fluxes were only retained when there was a minimum of 1 day (48 half-hours or ∼14%) of CH4 obser-
vations. This gap-filling threshold was chosen to retain as much training data as possible while minimizing the 
errors introduced by filling long gaps (Dengel et al., 2013; Peltola et al., 2019). Most gaps were less than 5 hr 
in length, and the maximum possible gap-length was 12  days (Figure S1 in Supporting Information  S1). A 
detailed study of machine learning-based gap-filling of eddy covariance CH4 fluxes found that bias introduced by 
gap-filling remains small and consistent across gap-lengths of 12 days or less (Irvin et al., 2021). After applying 
the gap-filling threshold, the final flux data set consisted of 6,210 weekly observations spanning 2006–2018, with 
96% of the data recorded after 2010, and 38% recorded after 2015.

Sites within 300  km of each other were grouped together, resulting in 26 clusters that were used for spatial 
leave-one-out cross-validation (LOOCV) of the machine learning model, where each training/validation fold 
consisted of all data except one hold-out cluster (Meyer et al., 2019) (Figure 2). Spatial LOOCV has previously 
been applied to evaluate models used in global upscaling of CO2 and energy fluxes (Tramontana et al., 2016) and 
is suitable for making spatio-temporal predictions from spatially sparse time series data (Roberts et al., 2017). 
Further information on the wetland site class, geolocation, climate, site investigators, and data source is provided 
in Table 2. Additional information about the FLUXNET-CH4 sites considered for this study, including data digi-
tal object identifiers, site references, and source locations, are detailed in (Table S1), on the FLUXNET website 
and in Delwiche et al. (2021).

2.1.2. Predictor Data

A total of 140 candidate predictors were considered for data-driven upscaling. These candidate predictors 
were organized into five broad classes: climatic (e.g., temperature, precipitation), biometeorological (i.e., flux 
tower-measured air temperature, and ecosystem carbon and energy fluxes), land cover class and properties (e.g., 
vegetation class) (Tuanmu & Jetz, 2014, 2015), soil physical and chemical properties (e.g., clay content) (Hengl 

Figure 2. Location, class, and size of 26 globally distributed freshwater wetland clusters. Symbol sizes reflect the number 
of weekly CH4 fluxes in each cluster expressed as a percent of the total data set considered in this study. Clusters combine 
data from sites that occur within 300 km of each other. At least one site was available from each major climate zone 
(Arctic-boreal, temperate, and tropical) and all major wetland classes were represented. Mean annual maximum wetland 
area fraction over 2000–2017 is shown from the Wetland Area Dynamics for Methane Modeling (WAD2M) product (Zhang 
et al., 2021).
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et al., 2017; Lamarque et al., 2013), topography (e.g., slope), and vegetation indices (e.g., vegetation greenness) 
(Gao, 1996; Hall & Riggs, 2016; Huete et al., 2002; Jensen & Mcdonald, 2019; Myneni et al., 2015; Vermote, 2015; 
Wan et al., 2015). Each predictor class contains data from different sources (e.g., models, tower-observations, 
and/or remote sensing) and information content (e.g., spatial only, temporal only, or spatio-temporal). Gridded 
data products were extracted at pixels corresponding to tower locations and used directly in model development 
whereas tower-measured data, when available, were used preferentially in model training and then substituted by 
a globally gridded product to force the model during upscaling runs (e.g., tower-measured air temperature was 
mapped to the MERRA-2 reanalysis air temperature gridded product). Predictor data sources for each class are 
described in detail in (Text S1 and Table S2 in Supporting Information S1; Table S3).

Lead and lag times of one, two, or 3 weeks or months (for weekly and monthly data, respectively) were imposed 
on all temporally-resolved predictors, corresponding to multi-day and seasonal lead and lag timescales identified 
between wetland CH4 fluxes, and temperature, eddy covariance-derived gross primary production (GPP), and 
soil moisture-related drivers (Delwiche et al., 2021; Knox et al., 2021). For MODIS data, monthly mean seasonal 
cycles (MSC) and other annual metrics (e.g., site-year mean, minimum, maximum, amplitude) were also derived. 
Quality control figures (example shown in Figure S2 in Supporting Information S1) were generated for all predic-
tors and used primarily to identify and replace outliers with values from a proximate site within a cluster, an 
adjacent pixel (when sites were isolated within a cluster), or the site-year median (when varying in time). After 
deriving predictors, a total of 273 predictors were available for model training.

2.1.3. Predictor Selection

We used forward feature selection (FFS) to identify the optimal predictor subset from across all possible predic-
tors to use in the final model (Gregorutti et al., 2017; Meyer et al., 2018). For each FFS step, we trained a random 
forest model algorithm (Breiman, 2001) with all possible predictors and computed the cost function (here, mean 
absolute error (MAE)) on validation data to identify the predictor(s) associated with the smallest MAE. In the 
first FFS step, we evaluated all possible predictor pairs (33,670 possible combinations) and selected the pair that 
resulted in the smallest MAE. In the second FFS step, we evaluated all possible single predictors (of 273), and 
selected the predictor that, when combined with the first pair, resulted in the smallest MAE. The second step was 
repeated 10 times to ensure the identification of a global MAE minima. More details are provided in Text S2 in 
Supporting Information S1 and predictors identified via FFS are visualized in Figure S4 in Supporting Informa-
tion S1. FFS is suitable for spatial prediction tasks because it adds predictors when they reduce the cost function 
computed on held-out data. In contrast, recursive selection relies on importance rankings generated from the 
training data itself, which increases chances of overfitting (Meyer et al., 2018).

2.1.4. Cross Validation

After FFS, random forest models were re-trained using the final predictor set and their predictive performance was 
evaluated using leave one (cluster) out cross validation (cross validation, hereafter) (Meyer et al., 2018). During 
model training, a full hyperparameter grid-search was performed, which allowed for deeper, more complex trees 
(with a small minimum leaf node size). Model performance was evaluated by comparing predicted and observed 
CH4 fluxes using the coefficient of determination (R 2), MAE normalized by flux standard deviation (nMAE), and 
bias, computed as the mean of residuals. Nash-Sutcliffe Efficiency (NSE) was also computed as an integrative 
measure of model performance. NSE is equal to R 2 when model bias is zero, and a NSE > 0 corresponds to a 
model performance better than simply taking the average of the data. Performance was evaluated with respect to 
three data set components: site mean flux, mean seasonal cycle (MSC) calculated as the average monthly anom-
aly from site mean, and interannual monthly anomalies from the MSC (Jung et al., 2020; Peltola et al., 2019; 
Tramontana et al., 2016). These components distinguish spatial prediction performance (annual site means) from 
monthly mean seasonal cycles (MSC), and interannual variability (weekly or monthly anomalies).

2.2. Upscaling Global CH4 Flux

2.2.1. Final Model Ensemble

A final random forest model ensemble was trained to propagate uncertainties in training data to a gridded product. 
First, Monte Carlo simulations were used to create 1,000 simulated training datasets (each composed of CH4 flux 
plus the final predictor variables) where each weekly observation was drawn from a normal (Gaussian) distribution, 
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except CH4 flux for which the measurement uncertainty is defined as the variance of a double-exponential 
(Laplace) distribution (Irvin et al., 2021; Knox et al., 2019). For gridded products (e.g., static WorldClim data), 
dispersion around the true observations (distribution mean) was parameterized as a standard deviation of a 0.25° 
bounding box around each extracted pixel, for unitless MODIS enhanced vegetation index (EVI) products with 
the overall measurement uncertainty (0.015), for CH4 flux as the weekly mean uncertainty (incorporating both 
random and gap-filling uncertainties (Irvin et al., 2021; Knox et al., 2019), and for tower-measured air temper-
ature as a conservative estimate of standard temperature sensor precision (0.5°C) (Campbell Scientific, Utah). 
Second, 500 datasets were bootstrap sampled with replacement from the 1,000 simulations, and in each sample 
one site cluster was dropped at random. The site US-OWC was also always excluded due to its exceptionally high 
fluxes which could not be reproduced accurately by the best model (Figure 3a) and could introduce unnecessary 
bias error at other sites. Training on each bootstrap data set resulted in a final 500-member random forest model 
ensemble. Full details on Monte Carlo simulations are provided in Table S4 in Supporting Information S1.

2.2.2. Model Forcing

We applied the 500-member final model ensemble to an 18-year (216-month) time series of global grids of final 
predictor variables covering 2001–2018 from which the mean and standard deviation of predictions at each pixel 
globally was used as mean CH4 flux and data-driven uncertainty. The reconstruction period (2001–2018) aligns 
with the current Global Carbon Project CH4 modeling protocol and the monthly timestep of the WAD2M wetland 
extent product (Saunois et al., 2020; Zhang et al., 2021), though weekly data were used to train the machine 
learning model. For MODIS data, Google Earth Engine (Gorelick et al., 2017) was first used to prepare global 
monthly grids at 10-km resolution, excluding low quality observations, aggregating from 8-day values to monthly 
averages using the average of all good 8-day observations within a month, and aggregating from 500-m resolution 
to 10-km resolution using the average of all good quality 500-m or 1000-m observations within the 10-km pixel. 
Gaps of time-series of MODIS images were filled using the same methods as for site-based MODIS time series. 
All global grids were then resampled to a common 0.25° resolution and cropped to exclude Antarctica. Data were 
reprojected to WGS-84 geographic coordinates. Monthly positive and negative lags were imposed on grid stacks 
by shifting the stack by whole-month time steps, and linear interpolation between these shifts was used to create 
weekly time shifts. For each temporal predictor, a mean seasonal cycle stack was created by averaging rasters 
for each month across all available years for use in the global dissimilarity and tower constituency analyses (see 
Sections 2.2.3 and 2.2.4).

2.2.3. Wetland Area Products

We weighted each grid cell CH4 flux prediction by fractional grid cell wetland extent to estimate CH4 emissions 
using the primary WAD2M (Zhang et al., 2021) product and an alternate Global Inundation Estimate from Multi-
ple Satellites GIEMS version 2; Prigent et al., 2020) global wetland map. We used WAD2M as the primary map 
because it was also used in the GCP bottom-up model ensemble allowing for direct flux prediction comparisons 
(Saunois et al., 2020). However, global wetland area is the largest source of uncertainty in wetland CH4 emissions 
along with flux rates (Bloom et al., 2017; Melton et al., 2013), and the two maps enable a preliminary illustration 
of the sensitivity of our predicted emissions to different wetland area products. A robust evaluation of wetland 
extent uncertainties on upscaled emission estimates would require a detailed intercomparison such as that of 
Melton et al. (2013). Both WAD2M and GIEMS-2 maps were modified with several correction data layers to 
represent the monthly area covered by vegetated wetlands, excluding open water and coastal wetlands (Text S3 in 
Supporting Information S1) (Pekel et al., 2016). The maps were generated based on distinct multi-sensor meth-
odologies estimating monthly inundated wetland area, to which a set of tailored correction layers and steps were 
applied to isolate only vegetated wetland area, following the methodology of Zhang et al. (2021).

2.2.4. Global Applicability and Tower Constituency

Similar to the challenges faced in global wetland CH4 prediction using BU process models upscaled model 
predictions were extrapolated across a much larger spatial (Stell et al., 2021) and temporal (Chu et al., 2017) 
domain than that captured in the training data. Model extrapolation is likely to reduce the accuracy of flux predic-
tions and can distort uncertainty estimates (Stell et al., 2021). To measure extrapolation during CH4 upscaling, 
we first computed point-based dissimilarity (Hoffman et al., 2013) globally, defined as the minimum Euclidean 
distance between each grid cell-to-flux tower pair in predictor space, normalized by the mean distance among 
flux towers (Meyer & Buchta, 2020; Meyer et al., 2018, 2019). We then used the dissimilarity map to define a 
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Figure 3. Random forest model predicted versus observed values for(a–d) the mean seasonal cycle (MSC) of methane 
(CH4) flux for sites in (a) tundra, (b) boreal, (c) temperate, and (d) tropical climate regions and (e) the overall sites mean CH4 
flux, during cross validation. Although the US-OWC site is plotted in (a), it is excluded from calculation of Nash-Sutcliffe 
Efficiency (NSE), Coefficient of Determination (R 2), and mean absolute error (MAE; nmol m −2 s −1) performance metrics, 
and sample count (n). The 1:1 fit is shown as a dashed black line.
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monthly, global area of model applicability (AOA) and corresponding area of extrapolation, using a dissimilarity 
threshold (Meyer & Pebesma, 2022). Finally, we defined the global constituency of each site cluster to identify 
which training conditions dominate global predictions and further evaluate the plausibility of global extrapola-
tions. Each pixel was assigned as a constituent of the site cluster that was closest in predictor space (Hargrove & 
Hoffman, 2004). We propose that combining constituencies with AOA provides a semi-quantitative and inform-
ative approach to evaluating global representativeness and extrapolation confidence in upscaling models. We 
demonstrate this approach by identifying the regions that are most like training conditions and which training 
conditions each region is most similar to. This approach allows us to diagnose CH4 flux prediction patterns in 
extrapolations.

3. Results
3.1. Predictive Modeling

3.1.1. Model Predictors

Only the first six predictors from the FFS were used in the final upscaling model, as they accounted for ∼85% 
of the MAE reduction. These predictors were tower-measured air temperature, with and without a 2-week lag, 
MODIS EVI with a 3-week lag, mean temperature of the driest quarter, precipitation of the wettest month, and 
vegetation canopy height (Figure S4 in Supporting Information S1). It is notable that three of the final six predic-
tors were temperature related. An additional five predictors not included in the final model extended the FFS to 
the MAE minimum (Table S5 in Supporting Information S1) and included MODIS snow cover, tower-measured 
GPP with a 2-week lead, and the annual minimum in MODIS EVI. The random forest variable importance 
rankings deviated slightly in order from FFS, with air temperature and the two static climatological predic-
tors ranked as the most important final predictors, while canopy height and MODIS EVI were less important 
(Figure S5 in Supporting Information S1). A strong exponential dependency was observed between CH4 flux 
and air temperature, likely explaining its dominance in the variable importance, while more complex and/or less 
tightly correlated dependencies were observed between CH4 flux and the other predictors (Figure S6 in Support-
ing Information S1). Temperature hysteresis was not reproduced in the model in many sites where it has been 
observed in the CH4 flux observations (Chang et al., 2021) (Figure S7 in Supporting Information S1).

3.1.2. Cross Validation Performance

Model residuals (errors) were normally distributed around zero at bogs, fens, swamps, and wet tundra sites 
(Figure S8 in Supporting Information S1). At freshwater marshes, residuals displayed more negative outliers due 
to one site (US-OWC) that displayed exceptionally high CH4 fluxes (>10× higher than overall median) that the 
model did not reproduce. The fluxes at US-OWC are plausible because the site is situated in a eutrophic estuarine 
marsh on the southern shore of Lake Erie, USA, (Rey-Sanchez et al., 2018), which displays very high rates of 
sediment methanogenesis (Angle et al., 2017). However, evaluating the global scale emissions from eutrophic 
wetland is beyond the scope of this first wetland upscaling effort and therefore, hereafter, cross validation metrics 
are reported with the exclusion of the exceptionally high fluxes at site US-OWC.

When predicting site mean CH4 fluxes during cross validation (Figure 3a), the model achieved an NSE of 0.54 and 
nMAE of 0.42, and low model bias (2.6 nmol m −2 s −1) relative to the overall site mean CH4 flux (61.5 nmol m −2 s −1). 
Site mean CH4 flux errors were not spread evenly among wetland classes. Mean absolute errors (MAE) increased from 
wet tundra (11.7 nmol m −2 s −1) to bogs (13.2 nmol m −2 s −1), fens (25.7 nmol m −2 s −1), marshes (35.2 nmol m −2 s −1), 
and swamps (62.2 nmol m −2 s −1). However, after normalizing by flux standard deviation, nMAE increased from 
marshes (0.53) to fens (0.54), bogs (0.64), swamps (0.78), and wet tundra (1.48), reflecting low CH4 flux variability 
at wet tundra and high flux variability at marshes (Table S6 in Supporting Information S1). Mean seasonal cycles 
were, overall, predicted by the model with comparable accuracy to the site means (NSE = 0.53 and nMAE = 0.41). 
However, model prediction performance on MSC differed greatly by climate region (Figures 3b–3e), and decreased 
from higher at temperate (R 2 = 0.64; NSE = 0.63; nMAE = 0.37), boreal (R 2 = 0.62; NSE = 0.54; nMAE = 0.37), 
and tundra sites (R 2 = 0.59; NSE = 0.52; nMAE = 0.53), to lower at tropical sites (R 2 = 0.08; NSE = −0.12; 
nMAE = 0.81). Although all tropical sites were swamps, the pattern was less clear when sites were grouped by 
wetland class rather than by climate region, because the model achieved high MSC performance at a temperate 
swamp, US-NC4 (R 2 = 0.78; NSE = 0.50; nMAE = 0.58) (Table S6 in Supporting Information S1). Finally, the 
model was unable to predict interannual monthly anomalies from the MSC (NSE = −5.11; R 2 = 2e −3; nMAE = 37.2).
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3.2. Global Upscaling

3.2.1. Unweighted Global Methane Flux Predictions

Gridded freshwater wetland CH4 flux predictions, before being weighted by wetland extent (Figure S9 in 
Supporting Information S1), were compared pixel-wise to the original 43 training and four additional test flux 
tower sites (Figure 4). Globally, the model achieved an R 2 of 0.53, NSE of 0.51, nMAE of 0.35, and Bias of 
−6.0 n mol m −2 s −1. The slight improvement compared to cross-validation performance is expected as all the 
training data appears many times across the 500 bootstrap-sampled data sets models. Examples of gridded prod-
uct predictions at training sites and their uncertainties are shown in Figure S10 in Supporting Information S1. 
Notably, the model also performed well at three of four additional test sites (Figure 4), reproducing the site mean 
with nMAE ranging from 0.39 to 0.49 at the boreal and temperate sites. However, as was observed in training 
evaluations, predictions at the tropical forest test site (PE-QFR) did not reproduce the seasonal signal and exhib-
ited the largest nMAE (1.35).

3.2.2. Global Model Applicability and Tower Constituency

Confidence in gridded model predictions was also evaluated semi-quantitatively using global dissimilarity and 
tower constituency analyses. Global dissimilarity was low, even in areas geographically distant from existing 
towers (Figure S11 in Supporting Information  S1), suggesting that the model was not forced to extrapolate 
far from training conditions, even when making global predictions. The most dissimilar regions were Eastern 

Figure 4. The mean seasonal cycle of model-predicted CH4 flux (solid black line) and uncertainty range (gray ribbon) 
compared against monthly observed mean fluxes (open circles) and (a–c) standard deviation or (d) 25th–75th percentiles 
(vertical bars) for four AmeriFlux test sites. The model reproduced mean fluxes and the seasonal cycle best at (a) a boreal 
fen (CA-CF2; Tenuta, 2020), (b) a temperate fen (US-ALQ; Olson, 2018), and (c) a boreal bog site (US-MBP; Roman 
et al., 2021), whereas seasonal cycle performance was not reproduced at (d) one humid tropical forest site (PE-QFR; Roman 
et al., 2020), which is an upland site that experiences very wet soil conditions and supports substantial but highly variable 
CH4 fluxes.
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Siberia, South Asia (e.g., India), the Sahel and Congo regions of sub-Saharan Africa, and the Amazon basin. 
The most dissimilar sites were in tropical and temperate regions, with lower dissimilarity in boreal and tundra 
regions (Figure S11 in Supporting Information  S1). The tower constituency map (Figure S12 in Supporting 
Information S1) visualized how the model is likely to extrapolate from training data at sites to geographically 
distant regions, given their similar predictor conditions. The Amazon and Congo basins, which lack flux towers, 
fall within the constituencies of two SE Asian towers (ID-Pag and MY-MLM). The constituency of the Brazilian 
Pantanal tower, BR-Npw, encompasses other wet savanna and monsoon regions of South America, Africa, and 
Asia. Much of central and western Australia and semi-arid tropics of South America and the Sahel are assigned 
to the subtropical Botswana site constituencies (BW-Nxr and BW-Gum) or Mediterranean California (USA) site 
constituencies (US-Myb, US-Tw1). These semi-arid or arid tropical constituency assignments are reasonable on 
the basis of climate; however, it is important to note that the wetland sites in these environments where the afore-
mentioned towers are located are associated with large inland deltas (i.e., the Okavango Delta, Botswana, or the 
Sacramento Delta, California), which provide water to support marsh and swamp wetlands. The final model did 
not include surface hydrological variables and therefore extrapolation to these regions may not be easily evaluated 
by the dissimilarity and constituency analysis employed here. No relationship was observed between model error 
or variance and site-month dissimilarity (Figure S13 in Supporting Information S1) that could be used to scale 
errors in regions of extrapolation (Jung et al., 2020).

3.2.3. Wetland Area-Weighted CH4 Fluxes

Time series of mean freshwater wetland CH4 fluxes from UpCH4 (2001–2018), weighted by WAD2M pixel 
wetland area, displayed regional patterns that reflected the interaction of wetland area and the model's flux 
predictions (Figure 5a). The highest wetland area-weighted fluxes (>30 mg CH4 m −2 d −1) were predicted in both 
high- and low-latitude regions with extensive wetland area (e.g., Hudson Bay Lowlands (HBL), Congo Basin) 
and in semi-arid regions where wetland cover is low but model flux predictions were very high (Figure S9 in 
Supporting Information S1). Relative uncertainties (Figure 5b) were the smallest for high-latitude high emission 
(>20 mgCH4 m −2 d −1) hotspots associated with the HBL and West Siberian Lowlands (WSL) wetland complexes 
and were largest in monsoon regions of relatively low flux (<5 mgCH4 m −2 d −1) sandwiched between the semi-
arid and humid tropics.

Upscaled (UpCH4) fluxes were compared to three alternative global wetland CH4 emission datasets using either 
the same WAD2M wetland area (i.e., GCP BU ensemble; Figure 5c), or variable wetland products (i.e., GCP 
TD ensemble; Figure  5e). At high-latitude wetland complexes (HBL and WSL), UpCH4 predicted slightly 
lower emissions than the mean of the GCP BU ensemble, similar to the GCP TD ensemble, but higher than 
WetCHARTS. Given the same WAD2M wetland area was applied in upscaling as in the GCP BU ensemble, this 
difference can be attributed to lower predicted CH4 fluxes by UpCH4. At mid-to-low latitudes, UpCH4 predicted 
10–30 mgCH4 m −2 d −1 higher fluxes than the other products from the semi-arid tropics, including the Sahel and 
Horn of Africa, central and western Australia, and western Asia, while also predicting 20–30 mgCH4 m −2 d −1 
lower fluxes from the humid tropics, including the large wetland complexes of the Amazon and Congo Basins, 
and SE Asia, especially in Indonesia and Malaysia. Again, as the GCP BU ensemble used the same wetland area, 
these product differences can be attributed to wetland CH4 flux rates rather than extent. The regional pattern of 
tropical emissions in WetCHARTS was more similar to the GCP TD ensemble pattern than the GCP BU ensem-
ble pattern, which differ as described in Figure 1.

3.2.4. Temporal Trends and Spatial Patterns in UpCH4 Emissions

Upscaling model (UpCH4) emissions using both WAD2M and GIEMS-2 wetland area products are seasonal, 
with a JJA peak that corresponds with the expansion of wetland area, the warmest soil temperatures, and peak 
productivity at northern high-latitudes, (Figure 6). As indicated by globally integrated fluxes, UpCH4-WAD2M 
emissions correspond well with the average of the GCP BU ensemble range, whereas UpCH4-GIEMS-2 emis-
sions are significantly lower, although the amplitude of the seasonal cycle is larger. No clear long term annual 
trend is predicted by UpCH4 (or other models), though interannual variability is apparent, driven by wetland 
extent changes.

The latitudinal pattern of UpCH4 emissions using either wetland extent lacks the year-round elevated equato-
rial band found in the GCP products (Figure 7). The temporal pattern of this band varies slightly between the 
GCP BU and TD ensemble, which show a clear seasonal peak in AMJ. The UpCH4-WAD2M upscaling still 
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produces a similar global total to the GCP BU ensemble from a much larger latitudinal range for moderate fluxes. 
Increased UpCH4 emissions are observed for narrow tropical N hemisphere (10–20°N) and subtropical S hemi-
sphere (20–30°S) bands, likely related to high flux predictions in the semi-arid climate whereas GCP BU and TD 
ensembles show enhanced fluxes around 30°N and 10°N.

4. Discussion
4.1. Model Performance

UpCH4 achieved comparable metrics based on our spatial cross-validation (global R 2  =  0.50; Northern site 
R 2 = 0.48) to a recent northern high-latitude upscaling of CH4 fluxes from 25 eddy covariance towers (Peltola 
et al., 2019), despite a larger and more variable global flux data set. UpCH4 also achieved better performance than 
global upscaling models for net ecosystem exchange of CO2 (R 2 < 0.5) (FLUXCOM; Tramontana et al., 2016). 
As noted by Peltola et al. (2019), net CH4 fluxes measured with eddy covariance may be difficult for machine 
learning models to reproduce with limited datasets as they display complex and non-linear behavior, and are 
subject to storage effects and lags (Knox et al., 2021; Sturtevant et al., 2016) due to underlying CH4 production, 
oxidation, and transport processes (Bridgham et al., 2013; Chang et al., 2021) identified substantial hysteresis in 
the seasonal temperature dependency of wetland CH4 flux and Delwiche et al. (2021) identified lags and leads of 
various lengths between peak growing season air temperature and peak CH4 flux. Temperature lags may be due 
to the substrate control of CH4 production and would agree with coherence with ecosystem production (Knox 

Figure 5. Global maps of: (a) Upscaled (UpCH4) mean 2001–2018 CH4 flux using WAD2M wetland area (b) CH4 flux uncertainty computed as 1 standard deviation 
of the random forest ensemble expressed as a percent of the mean (i.e., coefficient of variation) 2001–2018 flux; (c, e) the mean 2001–2018 CH4 flux from the Global 
Carbon Project (GCP) bottom-up/top-down process model ensemble (also using WAD2M) subtracted from the UpCH4 mean (a); (d, f) the correlation, expressed as the 
correlation coefficient of determination (R 2), between the mean seasonal cycle (MSC) of UpCH4 and the GCP bottom-up/top-down ensemble.

 2576604x, 2023, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023A

V
000956 by T

exas A
&

M
 U

niversity L
ibrary, W

iley O
nline L

ibrary on [11/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



AGU Advances

MCNICOL ET AL.

10.1029/2023AV000956

16 of 24

et al., 2021; Mitra et al., 2020). In UpCH4, leads and lags of various lengths were imposed on all temporal predic-
tors to address part of this complexity and two lagged predictors were selected in the final model (i.e., lagged 
temperature and EVI), indicating their utility when using non-temporal machine learning algorithms such as 
random forests. However, observed hysteresis between temperature and CH4 flux was not reproduced (Figure S7 
in Supporting Information S1), suggesting that simply imposing lags on predictors cannot capture the complex 
biogeochemical processes that drive intra-seasonal variability (Chang et al., 2021). Deep learning models able to 
learn temporal dependencies, such as Long Short Term Memory (LSTM) neural networks, and/or able to incor-
porate process knowledge as constraints, could be considered as the core algorithms for CH4 upscaling; however, 
this would require adapting model architecture for spatio-temporal predictions (Reichstein et al., 2019).

Performance improvements may also be expected if wetland CH4 fluxes measured using eddy covariance can 
be partitioned into ebullition, diffusion, and plant-mediated transport pathways as has been done to partition 
diffusion and ebullition in lakes and bogs (Iwata et  al.,  2018; Ueyama et  al.,  2022). Each of these transport 

Figure 6. Monthly time series of upscaled wetland CH4 emissions (UpCH4) using WAD2M (2001–2018) and GIEMS-2 
(2001–2015) compared with the 13-member GCP BU ensemble (2001–2017) and 17-member subset of GCP TD ensemble 
(2010–2017). The UpCH4 mean and spread are difficult to distinguish from those of the GCP BU ensemble due to small 
differences between the two estimates.

Figure 7. Average monthly freshwater wetland CH4 emissions (TgCH4 month −1) for ∼1°latitude bands from UpCH4 for the 
two wetland maps (WAD2M and GIEMS-2) over 2001–2017; three alternative global datasets (Bottom-up GCP ensemble 
over 2001–2017, Top-down ensemble over 2010–2017, and WetCHARTS v1.0 over 2000–2010) are also shown. Average 
CH4 flux estimates from five data sources showing differences in total emissions.
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processes is regulated by distinct drivers and produces flux signals that may 
be more directly attributed to these processes when separated from each 
other. Improved models may also be possible if we can reconcile current 
wetland classifications with real wetland differences in the mean and/or vari-
ance of methane fluxes.

4.2. Budget Comparisons

Global freshwater wetland CH4 emissions and overall uncertainties during 
the period 2001–2018 from UpCH4 were 146  ±  42.7 TgCH4  y −1 using 
WAD2M wetland area (Figure 8a), which closely matches emissions from 
the GCP bottom-up model ensemble for 2007–2018 (mean 149 TgCH4 y −1; 
range 102–182 TgCH4 y −1) but is substantially lower (31–44 TgCH4 y −1) than 
GCP top-down emissions (mean 181 TgCH4 y −1; range 159–200 TgCH4 y −1) 
(Saunois et  al.,  2020) and WETCHIMP emissions (190 ± 39 TgCH4 y −1) 
(Melton et  al.,  2013). Notably, UpCH4-WAD2M global emissions were 
also similar to that of Nzotungicimpaye et  al.  (2021) (158.6 TgCH4  y −1) 
who implemented WETMETH—a CH4 process model, within the UVic 
Earth System Climate Model, and Ma et al.  (2021) (148 TgCH4 y −1) who 
used satellite-based observations to refine estimates from 42 BU process 
models. Using GIEMS-2 corrected for only vegetated wetland area, rather 
than WAD2M, cut UpCH4 global emissions by more than half (71.8 ± 22.6 
TgCH4 y −1), highlighting the sensitivity of total emissions to the wetland map 
used (Figures S14–S16 in Supporting Information S1).

At the global scale, UpCH4 mean CH4 emissions agreed more closely with 
GCP BU emissions for tropical (60S–30N), temperate (30–60 N), northern 
(>45 N), and Arctic (60–90 N) latitudinal ranges compared to GCP TD esti-
mates, which were consistently higher, most notably in the tropics. However, 
UpCH4 uncertainty ranges overlapped with both TD and BU estimates and 
supported the previously reported observation that ∼68% of wetland CH4 
emissions originate from tropical wetlands (Saunois et  al.,  2020). Within 
major wetland complexes at northern latitudes (Figure 8b), UpCH4 agreed 
more closely with lower TD estimates for the WSL, and UpCH4 emissions 
for the HBL and Prairie Pothole Region were also lower than both BU and TD 
estimates. For tropical wetland regions, estimates diverged more significantly 
between UpCH4 and the GCP ensembles (Figure 8c) with larger uncertainties 
likely due to lack of data in tropics. Although UpCH4 agreed closely with BU 
estimates for the tropical latitude total, UpCH4 emissions were much (∼3x) 
higher for the semi-arid monsoon Sahel compared to either GCP ensemble 
product, and much lower emissions estimated for the humid tropical forested 
wetlands of the Amazon, Congo, and the Indonesian archipelago.

4.3. Interpreting Product Differences

Interpreting similarities and differences in spatial patterns between global 
estimates of wetland CH4 emissions is challenging because they arise from 

differences in both wetland fluxes and wetland area (akin to Melton et al., 2013). However, some broad conclu-
sions can be drawn. GCP BU ensemble comparisons are informative at subtropical and tropical latitudes because 
in this study the shared use of the WAD2M wetland area enables model differences to be fully attributed to 
flux processes. As UpCH4 global upscaling emissions agreed most closely with GCP BU ensemble, it is nota-
ble that tropical and subtropical regional patterns diverged substantially (Figure 5c). The semi-arid to humid 
tropics gradient is inverted in UpCH4 when compared with GCP and thus these models produce similar global 
totals but different regional distributions. Given that inversion and observational studies in the Amazon Basin 
indicate a very large CH4 source (Devol et al., 1988; Gauci et al., 2022; Pangala et al., 2017), it is plausible that 

Figure 8. (a) Global and (b, c) regional comparisons of annual wetland 
CH4 emissions from upscaling (UpCH4; blue circles), GCP BU ensemble 
(bottom-up; black square), and TD inversion ensemble (top-down; green 
triangle). Regional wetland complex initialisms for West Siberian Lowlands 
(WSL; 52–74°N, 60–95°W), Hudson Bay Lowlands (HBL; 50–60°N, 
75–96°W); Prairie Pothole Region (PPR; 42–55°N, 92–115°W).

 2576604x, 2023, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023A

V
000956 by T

exas A
&

M
 U

niversity L
ibrary, W

iley O
nline L

ibrary on [11/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



AGU Advances

MCNICOL ET AL.

10.1029/2023AV000956

18 of 24

the upscaling pattern is biased, and that semi-arid and humid tropical wetland emissions are over- and under-
estimated, respectively. However, observations of exceptional CH4 emissions from seasonal wetlands in the hot 
semi-arid tropics (e.g., BR-Nxr and BR-Gum, the Okavango Delta wetlands in this study) underscore that more 
measurements could support more robust validation of these patterns. If semi-arid/monsoon wetland CH4 sources 
are currently being underestimated in BU models, this missing source would significantly close the gap between 
current BU and TD global wetland CH4 emissions estimates.

4.4. Data Limitations

The training data contained a geographic bias with many more temperate and boreal northern hemisphere sites 
than tropical and southern hemisphere sites. Only 9% of the training data (5 sites) were acquired from south of 
23°N, despite the tropics accounting for the vast majority of the non-frozen global wetland area and an estimated 
two-thirds of global CH4 emissions (Melton et al., 2013; Saunois et al., 2020). As a result, tropical CH4 flux 
predictions were based on flux data from a few towers that are unlikely to be representative of the entire tropical 
region and, correspondingly, tropical prediction uncertainties from UpCH4 were high (Figure 5b). For instance, 
training data for semi-arid subtropical regions were dominated by site clusters in the Sacramento Delta, United 
States (US-Myb, US-Sne, US-Tw1, US-Tw4, US-Tw5), and the Okavango Delta, Botswana (BW-Gum, BW-Nxr), 
which together accounted for ∼20% of all training data. In both regions, minerotrophic deltaic wetlands are 
dependent on large seasonal or permanent allochthonous riverine inputs from regional-scale drainage basins, and 
thus sustain very productive marsh or swamp conditions conducive to high CH4 fluxes that contrast sharply from 
the surrounding dryland environments (Hemes et al., 2019; Knox et al., 2015). The lack of wetland data from 
more varied hydrologic classes of wetlands (e.g., riverine, isolated or rainfed, i.e., ombrotrophic) under similar 
climate conditions, combined with the biases described above, may have led to the high predicted CH4 fluxes for 
the semi-arid subtropics.

The CH4 flux predictions and uncertainties (Figure 5), combined with the tower constituency and model appli-
cability maps (Figures S10 and S11 in Supporting Information S1), provide the first global survey for situating 
new eddy covariance measurement sites based on both CH4 flux and environmental information. Moreover, an 
expanded site constituency representativeness analysis confirmed that global wetland CH4 upscaling will benefit 
most from additional tropical wetland flux data (Figure 9). The large humid tropical site constituencies (e.g., 
ID-Pag—a SE Asian peat swamp forest) imply very wide model extrapolation across the Amazon and Congo 
Basins, where there is currently no available CH4 flux data and where fluxes could be quite different. Simi-
larly, the largest CH4 flux uncertainties were observed for transitional climate regions between the semi-arid and 
humid tropics (Figure 5) and establishing towers to bracket or traverse these regions could help capture important 
gradients in tropical wetland conditions relevant to CH4 flux variability. Overall, the lack of observations for 

Figure 9. (a) Global wetland CH4 flux site-cluster constituencies for which pixels are assigned to one of 26 site-clusters (colors) based on similarity to UpCH4 
predictor conditions at the sites within that cluster. (b) The ranked difference in predicted CH4 emissions (TgCH4 y −1) between UpCH4 predictions for a given 
constituency (colors) and a simple extrapolation of the monthly mean flux for the site cluster to the entire constituency (ignoring flux data from other sites). 
Constituencies and their upscaling-based emission estimates are likely to be insensitive to adding additional sites (more transparent colors in map (a)) when emissions 
differences are close to zero (short segments in (b)). In contrast, constituencies and emission estimates are likely to be more sensitive to additional sites (opaque colors 
in map (a)) where absolute emissions differences are large (long segments in (b)). The size of the segment end points is proportional to the annual constituency CH4 
flux. A full constituency map without variable color transparency is provided in Figure S12 in Supporting Information S1.
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large regions of the tropics combined with the distinctive hydrological regimes characterizing different tropical 
wetland regions (Apers et al., 2022; Dalmagro et al., 2018), likely account for the upscaling discrepancy with 
past and typically higher tropical emission estimates, such as for the Amazon Basin (Figure 6). Refined methods 
to evaluate CH4 flux tower network representativeness along different dimensions of variability could result in 
improved estimates, as has been undertaken at regional scales (Malone et al., 2022; Villarreal & Vargas, 2021). 
Similarly, use of more finely resolved spatial forcing data can more accurately represent wetland conditions and 
may improve model functional responses (e.g., 30-m resolution in Bansal et al., 2023).

In addition to geographic bias at global scales, wetland flux towers are also likely biased with respect to average 
grid cell conditions. Wetlands are often a minority cover type at landscape scales meaning that training data 
based on grid cell averages alone, for example, MODIS vegetation products may not be representative of tower 
conditions (Chu et al., 2021). Applied to the case described above of minerotrophic swamp or marsh surrounded 
by drylands, scale-mismatch will likely result in erroneous wetland vegetation indices, such as greenness and 
phenology metrics, as well as derived products such as GPP, which many studies, including this study, indicate as 
important for predicting CH4 fluxes(e.g., Bridgham et al., 2013; Chang et al., 2021; Delwiche et al., 2021; Knox 
et al., 2019; Whiting & Chanton, 1993).

Spatial biases at global and landscape scales could be addressed in future work by improving the geographic and 
grid cell representativeness of CH4 flux and predictor data, respectively. Developing methods to reconcile and 
integrate chamber flux data with tower flux data could be prioritized to gain information from the large amount 
of existing chamber data, such as in Bansal et al. (2023), Kuhn et al. (2021), and Turetsky et al. (2014). Chamber 
methods offer a relatively inexpensive and accessible means to gather data in underrepresented regions (Harriss 
& Matson, 2009), may provide insights into patch-scale effects when paired with tower data via environmental 
response functions methods (Xu et al., 2017), and can extend the temporal representativeness of flux data (Chu 
et al., 2017).

5. Conclusions
We develop a wetland CH4 flux upscaling workflow (UpCH4) for eddy covariance flux data and evaluate global 
CH4 emission predictions. Extratropical estimates from UpCH4 can provide insights from comparisons to exist-
ing CH4 model predictions. The use of UpCH4 tropical wetland emissions estimates should include consid-
eration of uncertainties and joint use of additional regional data constraints is strongly encouraged. UpCH4 
estimates average annual freshwater wetland CH4 emissions of 146 ± 42.7 TgCH4 y −1 for 2001–2018 which 
aligns closely with the most recent GCP BU estimates (149 TgCH4 y −1) (Saunois et al., 2020) and a hybrid study 
that constrained a large ensemble of process models with satellite data (148 TgCH4 y −1) (Ma et al., 2021). UpCH4 
emission uncertainties were larger than, and overlapped with, both GCP BU and TD estimates, and the sensitivity 
to wetland extent products is illustrated by the halving of the global emissions total (71.8 ± 22.6 TgCH4 y −1) 
when using GIEMS-2 corrected for only vegetated wetland area. All gridded emissions products are available 
via ORNL DAAC (https://doi.org/10.3334/ORNLDAAC/2253). UpCH4 is most suitable for comparison to other 
bottom-up and top-down models within temperate, boreal, and arctic climate zones from 2010 onwards, and will 
improve in tropical regions as EC data coverage is expanded over time.
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Data Availability Statement
Different gridded CH4 flux outputs were generated with and without applying the WAD2M or GIEMS-2 wetland 
extent masks (Text S1 and Figure S3 in Supporting Information S1). Thus, final gridded products are: (a) grid-
ded unweighted wetland CH4 fluxes in nmol CH4 m −2  s −1 and g C-CH4 m −2  d −1; (b) wetland area-weighted 
fluxes in mg CH4 m −2 d −1; and (c) wetland area-weighted fluxes in TgCH4 grid cell −1 month −1. Main data prod-
ucts are available via DOE ORNL DAAC and Zenodo (UpCH4: https://doi.org/10.3334/ORNLDAAC/2253; 
WAD2M: https://doi.org/10.5281/zenodo.5553187). The GIEMS-2 wetland extent product is available at request 
from Catherine Prigent (catherine.prigent@obspm.fr). Code notebooks for random forest model development 
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and validation are available via Zenodo (https://doi.org/10.5281/zenodo.7978099). The Global Carbon Project 
methane budget is available at https://doi.org/10.18160/GCP-CH4-2019.
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