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A B S T R A C T   

Evapotranspiration (ET) links water, energy, and carbon balances, and its magnitude and patterns are changing 
due to climate and land use change in the southeastern U.S. Quantifying the environmental controls on ET is 
essential for developing reliable ecohydrological models for water resources management. Here, we synthesized 
eddy covariance data from 24 AmeriFlux sites distributed across the southeastern U.S., comprising 162 site-years 
of flux data representing six representative ecosystems including cropland vegetation mosaic (CVM), deciduous 
broadleaf forests (DBF), evergreen needle-leaf forests (ENF), grasslands (GRA), savannas (SAV), and wetlands 
(WET). Our objectives were to assess the daily, seasonal, and annual variability in ET and to develop practical 
predictive models for regional applications in ecosystem service analysis. We evaluated the response of ET to 
climatic and biotic forcings including potential evapotranspiration (PET), precipitation (P), and leaf area index 
(LAI), and compared the performance of these empirical ET models based and those developed using machine 
learning algorithms. Our results showed that the mean daily ET varied significantly, ranging from 1.36 mm d− 1 

in GRA to 2.30 mm d− 1 in SAV, with a numerical order : GRA < DBF < ENF < WET < CVM < SAV. In this humid 
region, mean annual PET exceeded P in 16 out of the 24 flux sites. Using the Budyko framework, we showed that 
ENF had the highest evaporative efficiency (ET/P). PET and leaf area index (LAI) emerged as the most influential 
factors explaining ET variability. Artificial neural networks (ANN) and random forest (RF) models demonstrated 
superior capabilities in predicting monthly ET across sites over generalized additive modeling (GAM) and 
multiple linear regression (MLR) methods. The present study confirmed that the Southeast region is generally 
’energy limited’, implying that atmospheric demand along with vegetation information can be used to reliably 
estimate monthly and annual ET. Our study provides valuable insights into how ET of specific ecosystems is 
controlled by climatic and land surface drivers, enabling the development of reliable predictive models for 
regional extrapolation of flux measurements in water resource management in the humid southeastern U.S. 
region.   
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1. Introduction 

Evapotranspiration (ET) serves as a crucial link among hydrological, 
biological, and ecological processes (Abdullah et al., 2015; Bhattarai and 
Wagle, 2021; Feng et al., 2017; Sun et al., 2016) and is an important 
indicator of ecosystem functioning and for quantifying ecosystem ser
vices (Sun et al., 2017). Consequently, understanding ET becomes vital 
for comprehending ecosystem responses to global environmental change 
(Acharya et al., 2022; Fisher et al., 2017; Mu et al., 2011). However, 
accurately estimating ET dynamics including its components (i.e., can
opy interception, soil and understory evaporation, and transpiration) 
remain highly uncertain, especially for vegetated surfaces where ET is 
governed by multiple biophysical processes operating at multiple scales 
(Anapalli et al., 2018; Chai et al., 2018; Fang et al., 2016; Negm et al., 
2018; Sun et al., 2011a; Zhang et al., 2018). 

Despite being a humid and water-rich region, the southeastern U.S. is 
not immune to water shortages resulting from climate change and 
increasing water demand (Engström et al., 2021; Sun et al., 2008). 
Forest-dominated headwater streams, which supply water, have 
declined due to elevated atmospheric demand, a longer growing season, 
and shifts in tree species composition (Caldwell et al., 2016; McQuillan 
et al., 2022), and groundwater losses (Engström et al., 2021). On the 
other hand, to mitigate the hydrological impacts of climate change and 
enhance ecosystem resilience in energy-limited environment like the 
higher elevation forest ecosystems, management strategies such as 
prescribed burning, thinning, and forest ecosystem restoration should 
incorporate vegetation management practices that specifically target the 
reduction of water usage as ET (Ma et al., 2020; Mclaughlin et al., 2013). 

However, there is a large spatial and temporal variability of water 
fluxes across the U.S. Southeast due to high spatial and temporal vari
ability in climate, vegetation dynamics, and land management regimes 
(Aguilos et al., 2021a; Stoy et al., 2006; Sun et al., 2010). Moreover, the 
complex terrains and diverse ecosystem structures in ecoregions such as 
the Appalachian Mountains, Piedmont, and Coastal Plains make accu
rate ET estimation challenging (Aguilos et al., 2022; Amatya et al., 
2016b; Oishi et al., 2018; Sun et al., 2011b). ET measurements across 
regional gradients and different environmental conditions (e.g. climate, 
soil types, elevation, hydrologic setting) spanning various ecosystem 
biomes (e.g. grasslands, savannas, agricultural lands, forests), and in 
some cases management practices (harvesting, thinning, prescribed 
fire), are required to develop reliable regional ecohydrological models 
for water resources management, particularly for the loss of water 
through ET to mitigate vegetation stress responses under climatic 
change (Acharya et al., 2022; Fang et al., 2016; Fisher et al., 2017). 

ET is influenced by various climatic factors, such as air temperature, 
net radiation, vapor pressure deficit (VPD), wind speed, rainfall, and 
other biotic variables, along with stomatal behavior (Adnan et al., 2020; 
Aguilos et al., 2021a, 2018b; Fang et al., 2016). Daily ET is also affected 
by soil water storage, which is dependent upon interactions between 
seasonal ET rates and precipitation (Aguilos et al., 2021b; Noormets 
et al., 2010, 2008). Any changes in soil hydro-physical properties also 
affect ET (Nobrega et al., 2017). Among the biotic drivers of ET, leaf area 
index (LAI) is a primary control of forest structure (Acharya et al., 2022) 
and vegetation growth, and an increase in LAI can potentially lead to 
both higher potential evapotranspiration (PET) as well as ET rates 
(Malone et al., 2015). Species composition, canopy structure (open or 
closed), age (young or old), and edge effects may also affect ET rates, as 
they influence light availability and to some degree, turbulence reaching 
the forest floor (Ringgaard et al., 2012). PET, a climatic parameter, is an 
essential input for hydrologic models and serves as a significant variable 
in determining actual ET (Amatya et al., 2016a; Xu and Singh, 2004). 
Elevation is an underexplored factor affecting ET rates, yet its significant 
role in regional meteorology has been acknowledged (Sun et al., 2020). 
However, the specific response of ET to the changing climate, with 
variation in elevation remains unclear. 

Directly quantifying ET fluxes using the eddy covariance method in 

the southern U.S. began in the early 1990s (Gholz and Clark, 2002). 
Eddy covariance (EC) techniques enable the direct measurement of ET 
fluxes at the stand scale (Paul-Limoges et al., 2015; Soubie et al., 2016). 
However, EC systems are expensive (Markwitz and Siebicke, 2019), 
which limits the use of this technique to estimate ET. Remote sensing has 
been employed to estimate global ET (Bhattarai and Wagle, 2021; Chen 
and Liu, 2020; Yang et al., 2017), however, this method encounters 
various challenges, including limited applicability and consistency 
under diverse conditions (Bhattarai and Wagle, 2021; Hu et al., 2020) 
and a scarcity of calibration and validation datasets (Fisher et al., 2017). 
Mathematical modeling has been widely used to enhance our under
standing of ET and scaling up (Fang et al., 2016; Granata, 2019; Komatsu 
and Kume, 2020; Sun et al., 2011b; Yaseen et al., 2019). Machine 
learning algorithms, such as Artificial Neural Networks (ANN) (Nema 
et al., 2017; Stangierski et al., 2019), Generalized Additive Modeling 
(GAM) (Markos and Radoglou, 2023), and Random Forest (RF) (Chen 
et al., 2020), have already been used in evapotranspiration research 
(Mehdizadeh, 2018; Nema et al., 2017; Xu et al., 2018). However, the 
current applications of machine learning techniques for estimating ET 
are limited, and our understanding of the topic is still partial and frag
mented (Granata, 2019). ET models have been used to capture the 
fundamental biophysical controls of ET, such as from LAI, water, and 
energy availability (Fang et al., 2016; Feng et al., 2012; Komatsu and 
Kume, 2020). However, these models also face challenges due to their 
inherent limitations and deficiencies. For example, some studies over
looked the biome-specific physiological characteristics of ET processes 
by employing a single global ET model equation for all land cover types 
(Mackay et al., 2007; Sun et al., 2011a). In contrast, other studies aimed 
to address this issue by developing land cover-specific ET models within 
a global context (Fang et al., 2016). These models did not fully account 
for the fact that biomes, although often regarded as distinct regions, lack 
clearly delineated boundaries. 

Modeling ET in hydrology at a large spatial scale remains challenging 
due to the difficulty in characterizing the landscape heterogeneity, 
diverse plant traits that control stomatal regulation, and ecohydro
logical data availability for model calibration and validation. One study 
highlighted a need to quickly detect emerging environmental challenges 
and then develop practical models for connecting different stakeholders 
(Komatsu and Kume, 2020). To address this issue, we conducted a 
regional synthesis of ET by collating data from eddy flux tower sites 
across the southeastern U.S. over six ecosystems (i.e., savannas, grass
lands, croplands, conifer and broadleaf forests, and wetlands). Our main 
goal is to determine the major controls over ET and use them to develop 
a practical land cover-specific ET model within a regional context, 
especially in this humid and water-rich region – the southeastern U.S. 

Our specific objectives were to (1) determine the daily, seasonal, and 
annual variability of ET across different ecosystems; (2) evaluate the 
functional response of ET to climatic and biological forcings; (3) char
acterize site-level variation in evaporative and dryness indices using the 
Budyko framework (Budyko, 1974); and (4) compare the performance of 
both empirical and machine learning based ET predictive models. We 
hypothesized that (1) spatial and temporal variability in ET will be 
affected by elevation, LAI, P, and PET; (2) PET may have more control 
over ET than precipitation in this non-water-limited region; and (3) 
models developed specifically for each land cover type will have better 
model performance compared to lumped ecosystems model. Our syn
thesis study highlights the importance of using land cover-specific ET 
models for regional applications and provides insights into how ET of 
specific ecosystems responds to climatic drivers in a time of rapid 
change. 

2. Methods 

2.1. Eddy flux data 

Eddy covariance data were obtained from the AmeriFlux network. 
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The Level 4 data product for 24 sites, encompassing 162 site-years of 
data, were downloaded (Supplemental Table 1, Fig. 1). These sites cover 
a diverse array of vegetation types, including evergreen needleleaf for
ests (ENF), deciduous broadleaf forests (DBF), savannas (SAV), wetlands 
(WET), croplands (CVM), and grasslands (GRA) (Table 1). 

Erroneous data are common issues in flux measurements (Aguilos 
et al., 2018a, 2014; Soloway et al., 2017). To address this issue, we took 
the following data filtering steps (Fig. 2): 1) We removed the data when 
daily net radiation (Rn) exceeded 100 MJ m− 2, as well as when daily LE 
or H exceeded 25 MJ m− 2. 2) We also excluded the data when the 
calculated daily PET was negative, ET exceeded 300 mm month− 1, or Rn 
was negative. 

2.2. Input variables 

Daily ET taken from the eddy flux system represents the canopy 
evaporation, transpiration, and soil evaporation. ET was converted from 
latent heat flux (LE in W m− 2) (Aguilos et al., 2021a; Sun et al., 2011b) 
using the conversion factor of LE (W m− 2) to ET (mm day− 1) considering 
the 30-minute time interval: 

ET =
LE
λ

(1)  

where, λ (J kg− 1) = 103 * (2500 – 2.37 * Ta), Ta = Air temperature in ◦C 
(Celsius). 

Daily ET was the sum of 30-min ET and compiled as the monthly 
average or sum, depending on the context and timescale we needed for 
the analysis. A year with more than one month gap was discarded from 
the analysis. Gaps of a few days were gapfilled using linear 
interpolation. 

Potential evapotranspiration (PET) was estimated using the 
Priestley-Taylor method (Ponraj and Vigneswaran, 2020) as it is simpler 
and input variables are more readily available compared to the 
Penman-Montieth method (Montieth, 1965). The Priestley-Taylor 
equation ((Priestley and Taylor, 1972) is given by: 

PET = α Δ (Rn − G)

λν (Δ + γ)
(2) 

In this equation, PET is the potential evapotranspiration in mm d− 1, α 
is an empirical constant accounting for the vapor pressure deficit and 
resistance values. We used a constant of 1.26 from the original method, 
typically used for open bodies of water, but with a wide range of values 
from less than 1 (humid conditions) to almost 2 (arid conditions). λν is 
the volumetric latent heat of vaporization, 2453 MJ m− 3. Δ is the slope 
of the saturation vapor pressure-temperature curve (kPa per◦C). γ is the 
psychometric constant (kPa per◦C). Ameriflux database provides Rn and 
soil heat flux (G) in W m− 2. However, Eq. (2) requires Rn and G in MJ 
m− 2 d− 1. Thus, we convert W m− 2 into MJ m− 2 d− 1 using the conversion 
factor: 1 W m− 2 = 0.0864 MJ m d− 1. 

LAI was bi-linearly interpolated to estimate daily LAI values from 
fused Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m 
and Landsat 30 m LAI (Yang et al., 2017). Daily precipitation (P), air 
temperature (Tair), net radiation (Rn), and vapor pressure deficit (VPD) 

Fig. 1. Location of carbon flux towers across the Southeast U.S. Ecosystems include CVM (Crop Vegetation Mosaic); DBF (Deciduous Broadleaf Forests); ENF 
(Evergreen Needleleaf Forests); GRA (Grasslands); SAV (Savannas); and WET (Wetlands). 

Table 1 
Ecosystem descriptions as defined from Ameriflux network (https://ameriflux. 
lbl.gov/).  

Ecosystem Site Description 

CVM Cropland/Natural Vegetation Mosaics: Lands with a mosaic of 
croplands, forest, shrublands, and grasslands in which no one 
component comprises more than 60% of the landscape 

DBF Deciduous Broadleaf Forests: Lands dominated by woody vegetation 
with a percent cover >60% and height exceeding two meters. Consists 
of broadleaf tree communities with annual cycle of leaf-on and leaf-off 
periods 

ENF Evergreen Needleleaf Forests: Lands dominated by woody vegetation 
with a percent cover >60% and height exceeding two meters. Almost 
all trees remain green all year. Canopy is never without green foliage 

GRA Grasslands: Lands with herbaceous types of cover. Tree and shrub cover 
is less than 10%. Permanent wetlands lands with a permanent mixture 
of water and herbaceous or woody vegetation. The vegetation can be 
present in either salt, brackish, or fresh water. 

SAV Savannas: Lands with herbaceous and other understory systems, and 
with forest canopy cover between 10 and 30%. The forest cover height 
exceeds two meters 

WET Permanent Wetlands: Lands with a permanent mixture of water and 
herbaceous or woody vegetation present in either salt, brackish, or 
fresh water  
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were obtained from the flux tower data. 

2.3. Modeling monthly ET 

Following the approaches of (Fang et al., 2016) and (Sun et al., 
2011a), we used three variables, namely potential evapotranspiration 
(PET), leaf area index (LAI), and precipitation (P), to build predictive ET 
models. The selected models included the Multiple Regression (MR), 
Artificial Neural Network (ANN), Generalized Additive Modeling 
(GAM), and Random Forest (RF) models. These models were chosen due 
to their demonstrated high performance and capacity to “learn” com
plex, highly non-linear relationships. We included the variables of Rn, 
VPD, and Tair to investigate the functional response of evapotranspira
tion to climatic and biological forcings. 

2.3.1. Multiple regression method 
Multiple linear regression is a widely-used regression model known 

for simplicity and effectiveness (Xuanxuan, 2018). It can be represented 
by Eq. (3), where β0 denotes the intercept, β1, β2, …, βn represent the 
regression model coefficients, and ε accounts for the multivariate error 
(Uyanık and Güler, 2013). 

Y = β0 + β1X1 + β2X2……. + βnXn + ε (3)  

2.3.2. Generalized additive model (GAM) 
Generalized Additive Modeling (GAM) is a flexible and smoothing 

technique that captures data non-linearities in data fitting. The influence 
of each covariate is captured through a smoothing function (Aguilos 
et al., 2018a; Markos and Radoglou, 2023; Shao et al., 2015). In this 
analysis, we used the spline function for smoothing covariates. The 
second-order Akaike information criterion (AIC) was used to avoid 
model over-parameterization (Burnham et al., 2011) and to slightly 
adjust the first-order bias-corrected AIC to reduce the bias (Burnham 
et al., 2011; Yanagihara et al., 2023). The gam function from the mgcv 
package in R was adopted to build the statistical models, and the MuMin 
package assisted in obtaining the best smoothing dimension (Barton, 
2022). 

The following formula represents the GAM model: 

ET = f1(ETo) + f2(LAI) + f3(P) + ε (4)  

where ƒ1, ƒ2, and ƒ3 are the smooth functions estimated by the model for 
each of the predictor variables, and ε is the error term. 

2.3.3. Random forest (RF) 
Random Forest (RF) uses decision trees to create a forest (Chen et al., 

2020; Ponraj and Vigneswaran, 2020). Decision trees represent all 
possible outcomes of a decision using a branching approach. RF relies on 
two crucial parameters: the node of a tree that defines the full features 
used, and the number of trees in the forest. By introducing randomness, 
this model effectively avoids overfitting issues (Hu et al., 2020). 

Similar to the MLR method, we used PET, LAI, and P to train a 
random forest regressor on ET within the training set. The performance 
of RF was then tested using the validation set. During the construction of 
random forests, the bootstrap method was applied to randomize the use 
of variables (columns) and the use of data (rows). The new sample is 
classified using the trained set of classifiers. Then the classification re
sults for all classifiers are counted by the mean of the output, and the 
highest categories are the final tag (Chen et al., 2020). With these three 
sets of parameters needed in RF regression, we set the minimum sample 
leaf to 100, the number of decision trees to 500, and the feature attri
butes to three. We used the randomForest package in R to train and verify 
the model (Liaw and Wiener, 2002). These parameters were applied to 
the entire dataset and for each ecosystem type. 

2.3.4. Artificial neural network (ANN) 
The Artificial Neural Network (ANN) employs a multi-layer percep

tron network with backpropagation that consists of an input layer, one 
hidden layer, and one output layer. The number of input layer nodes 
corresponds to the variables describing the attributes being tested, while 
the number of neurons in the output layer is equal to the number of 
classes (Fig. 3). The complexity of the task and the available training 
data determine the number of hidden layers and neurons in the model 
(Nema et al., 2017; Stangierski et al., 2019). 

This study used a total of 1944 monthly data records, where 60% 
were used as training datasets and the remaining 40% as validation set 
in a three-layer feed-forward back propagation algorithm. The super
vised learning of the model was done using ET as output and PET, LAI, 
and P as input parameters. We optimized the model for each ecosystem 
type using the neuralnet package in R (Fritsch et al., 2019). 

Fig. 2. The process flow of database content development, processing, and analysis.  
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2.4. Model accuracy assessment 

To compare the performance of different models, we used two widely 
used indicators: the coefficient of determination (R2) and the root mean 
square error (RMSE). These metrics serve to evaluate the agreement 
between the estimated and observed values of ET. The R2 quantifies the 
proportion of the variance in ET that can be explained by PET, LAI, and 
P. A value of R2 closer to 1.0 means the higher correlation between 
observed and modeled ET. On the other hand, RMSE is a measure of the 
average distance between the predicted and observed ET. The lower the 
RMSE, the better a given model can fit the dataset. We also compared 
model performances using the Akaike Information Criterion (AIC). The 
AIC compares the quality of a set of statistical models to each other. The 
AIC will rank each model from best to worst, thus providing the means 
for model selection. 

2.5. Addressing collinearity issues 

In the regression models, collinearity issues arise among the inde
pendent input variables, which should be addressed. We computed the 
variance inflation factor (VIF) (Fang et al., 2016) to identify highly 
correlated variables. Any variable with a high VIF value (above 5 or 10) 
should be removed from the model, leading to a simpler model without 
compromising the model’s accuracy. Theoretically, PET, Rn, VPD, and 
Tair are all energy-related climatic variables that are confounded and 
tightly coupled. For example, PET and Rn, and possibly Tair were highly 
correlated. Their VIF values with ET showed a VIF = > 5, indicating 
collinearity issues. We chose PET,that integrates temperature and net 
radiation together, among these energy-related variables to reduce the 
multicollinearity issue. We then added the LAI (a biological parameter) 
and P (that influences both canopy evaporation as well as soil 
moisture-related variable) as input to simplify model development for 
ET. Besides, PET, LAI, and P have been used by many authors and can be 
readily obtained from standard weather stations or as remote sensing 
data products(Sun et al., 2011b; Xu and Singh, 2005). 

2.6. The budyko framework 

We put our mean annual ET data in the context of the Budyko 
framework (Chen and Sivapalan, 2020; Kirschbaum, 2017; Sposito, 
2017) to demonstrate the influence of the aridity index (PET/P) on the 
water use strategies and efficiency (ET/P) of various ecosystems. Several 
mathematical forms are available to describe the relationship between 
evaporative and dryness indices. For example, (Zhang et al., 2001) used 
an equation to show that long-term mean forests ET is higher than grass 
ET (see Eq. (5)). In this model, ET is evapotranspiration, PET is the po
tential evapotranspiration, P is precipitation, and the plant available 

water coefficient is denoted by w. The parameter w was determined as 
2.0 for all types of forests and 0.5 for grasslands, including savannah 
(Zhang et al., 2001). 

ET
P

=
1 + w PET

P

1 + w
PET

P
+

P
PET

(5) 

Another form of Budyko curve was developed by (Fu, 1981) where 
the w parameter value of 2.84 was found to best fit data for forests and 
2.55 for grass-dominated watersheds (Zhang et al., 2004). 

ET
P

= 1 +
PET

P −

[

1 +

(
PET

P

)w]1/w

(6) 

We used these two Budyko models above to determine our optimized 
w using our datasets for various ecosystems to examine how our sites in 
the southeastern U.S. differ from the mean ET of other global ecosystems 
represented by the Budyko models. We then determine the coefficient of 
determination for the Budyko models and our optimized model to make 
comparisons. 

3. Results 

3.1. Variability in biological and climate variables across elevational 
gradients 

Higher-elevation ecosystems include DBF (~200 m asl to >1000 m 
asl) and GRA (~900 m asl), while the remaining ecosystems were at 
lower elevations (~0.4 m asl to ~180 m asl; Fig. 4a). The 1000 mm 
mean annual P isoline separated the GRA and SAV (P < 1000 mm) from 
the CVM, DBF, and WET (P > 1000 mm). The 15.0 ◦C mean annual 
temperature threshold separated the GRA and DBF (< 15.0 ◦C) from 
ENF, CVM, and SAV (>15.0 ◦C) and mainly occurred at mid- to high- 
elevation ranges (Fig. 4b). 

Across all ecosystem types, GRA had the lowest monthly PET (56.5 
mm month − 1) while SAV had the highest (117.6 mm month − 1) (Fig. 5, 
Supplemental Table 2). GRA also had the lowest precipitation (75.0 mm 
month− 1), while the CVM and DBF sites received higher monthly P of 
107.9 mm month− 1 and 104.7 mm month− 1, respectively. ENF sites had 
the highest average LAI (4.1). GRA ecosystems had the lowest average 
net radiation with only 59.2 W m− 2, while the rest had an average Rn 
ranging from 112.14 W m− 2 to 130.03 W m− 2. The average VPD among 
all ecosystem types was 0.65 kPa while air temperature varied from 
8.0◦C to 22.8◦C. 

Fig. 3. A diagram for building a neural network model.  
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3.2. Daily, seasonal, and annual variations in et 

Our results showed that mean daily ET varied significantly from 1.36 
mm d− 1 in GRA to 2.30 mm d− 1 in CVM (Fig. 6), with a trend of GRA <
DBF < ENF < WET < CVM < SAV (p < 0.05). There were significant 
differences in ET among grass, deciduous forests, and evergreen forests. 
It is interesting to note that the highest daily ET was found in Savanna 
indicating climatic effects on ET. 

The seasonal variations in ET followed a trend of increasing ET from 
January to May, peaking during the summer, and gradually declining 
towards September to December (Fig. 7a). Lower elevation (< 200 m 
asl) ecosystems (e.g., WET, CVM, SAV, and ENF) released low amounts 
of water during the non-growing seasons of only 1.0 mm d− 1 to 2.0 mm 
d− 1, and even lesser amount at the higher elevation (> 200 m asl) 
ecosystems, such as DBF and GRA, at < 1.0 mm d− 1. Higher rainfall 
during the winter (November to December) at mid-elevation sites did 
not result in higher ET rates (Figs. 7a and 7b). The ET fluxes were the 
highest during the peak of the growing season (June to August) and 
consumed 58 – 82% of P when temperature was high (Fig. 7c). 

The highest P was recorded in CVM sites (mean annual = 1295 mm), 
which was similar to the DBF sites (1256 mm), while the lowest P of 900 

mm was mainly in Virginia’s Canaan Valley GRA sites. The P distribu
tion varied mostly in DBF sites (674 mm – 1870 mm), located along an 
elevation gradient from 183 m asl to 1126 m asl. The CVM sites also had 
the highest mean annual ET (819 mm), with the lowest (489 mm) for the 
GRA site. However, the site with the widest range of annual mean ET 
was ENF, ranging from 436 mm to 1327 mm (mean = 796 mm). CVM 
also had the highest mean annual PET (1451 mm), but the highest PET 
variability occurred in DBF sites, with a 910 mm difference between the 
minimum of 652 mm and a maximum of 1562 mm. While mean annual 
PET tended to be higher than the mean annual P in most ecosystems, this 
was not the case for higher elevation sites such as DBF and GRA, where 
higher rainfall amounts were recorded than the PET (Table 2). Out of 24 
flux sites, 16 sites had P that exceeded PET. The pine plantations (US- 
NC2 and US-NC3), a natural forest (US-xTA), a wetland in North Car
olina (US-NC4), Virginia’s deciduous broadleaf forests (US-xML and US- 
xBL), and grassland site (US-CaV) all had PET lower than P. 

On an annual basis across all sites, mean annual P explained 12% of 
the variations in ET while PET explained 32% (Fig. 8, equation not 
shown). Mean annual ET was generally lower than calculated PET 
(Fig. 8). Indicative of the warm and wet climate conditions, the South
east U.S. had an overall annual ET:P of 0.44 to 0.89, but high PET:P 

Fig. 4. The different ecosystems across elevational gradients (a) and the distribution of mean annual temperature and annual mean precipitation across various 
ecosystem (b). Ecosystems include CVM (Crop Vegetation Mosaic), DBF (Deciduous Broadleaf Forest), ENF (Evergreen Needleleaf Forest), GRA (Grassland), SAV 
(Savannas), and WET (Wetland). 
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ratios of up to 1.52. DBF had the lowest ET:P (0.44), while the SAV sites 
consumed more water than the forest ecosystems (0.82). The PET:P ratio 
in DBF was also the lowest (0.82), but the PET at SAV was 1.5 times 

higher than P (1.52). The WET sites at the lower coastal plains in Florida 
and North Carolina WET sites had a ET:P ratio of 0.73, but the PET:P 
ratio in Florida’s wetlands reached 1.15. However, evaluating ET as 
affected by P or PET alone is not sufficient to explain ET trends, espe
cially when detecting anomalies. Thus, the need for the Budyko frame
work to understand better the ET evaporative and dryness indices across 
ecosystems. 

3.3. Detecting ET anomalies using the Budyko framework 

We determined the site variation in the evaporative index (ET/P) and 
dryness index (PET/P) using the Budyko framework. In the Budyko 
space, it showed that ENF had the highest relative evaporative water 
losses (ET/P), while DBF (i.e., low PET/P) was least sensitive to drought 
(Fig. 9). Surprisingly, Florida’s wetland sites appear to be moving to
wards water-limited systems (PET/P > 1.0). 

To determine how our data fit in the two widely used Budyko 
models, we embedded the mean annual ET data in the Budyko space (Fu, 
1981; Zhang et al., 2004, 2001) to describe the relationship between 
evaporative and dryness indices. We found that these generalized 
models fit the data well. As expected, the Budyko parameter w of 2.72 
developed in this study slightly deviated from the other two models for 
either forests or grasslands (Fu, 1981; Zhang et al., 2004). However, it 
appears that the generalized model with a parameter of 2.72 is sufficient 
to represent the Southeast region as a whole (Fig. 9). In this study, we 
could not derive ecosystem specific w parameter due to data sample 

Fig. 5. Variation in biological and climatic input variables), (a) PET (potential evapotranspiration), (b) Monthly P, (c) LAI (leaf area index), (d) Tair (air temper
ature), (e) Rn (net radiation), and (f) VPD (vapor pressure deficit). 

Fig. 6. Variation in monthly ecosystem evapotranspiration (ET) across 
ecosystem type GRA (Grassland), DBF (Deciduous Broadleaf Forests), CVM 
(Cropland Vegetation Mosaic), ENF (Evergreen Needleleaf Forests), WET 
(Wetlands), and SAV (Savannas). Monthly data were used in the analysis. In the 
boxplots, the thick horizontal line shows the median; the box extends to the 
upper and lower quartiles; and the thin vertical lines indicate the range. 
Different letters denote significant differences among ecosystem type (p 
< 0.05). 
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limitations. 

3.4. Functional response of evapotranspiration to climatic and biological 
forcings 

We used monthly PET, LAI, Rn, VPD, Tair, and P as predictor vari
ables to model monthly ET. By lumping all sites together, the GAM 
modeling revealed that LAI is the best single predictor, explaining 59% 
of the variation (computation not shown). The combined climate and 
biological variables explained 78% of the variation in ET (Table 3). 

Using only monthly LAI as a predictor variable for ET in the DBF site 
was enough to explain most of the variation in ET with R2 = 0.76 (p <
0.05). In contrast, PET was the sole predictor variable for the CVM site 
(R2 = 0.91 (p < 0.01) (Table 3). Four variables (LAI, PET, P, and Tair) 
were needed to best explain the most change in ET at the ENF sites (R2 =

0.79, p < 0.001), with LAI ranked as the best predictor. The best pre
dictor variables for GRA sites were LAI, Rn, and PET (R2 = 0.88, p <
0.001), while VPD, Rn, LAI, and PET best explained ET at the SAV sites 
(R2 = 0.88, p < 0.001). At the WET sites, LAI was the primary predictor 
of ET together with PET and VPD (R2 = 0.69, p < 0.001). Overall, LAI 
was the most limiting factor as it appeared as one of the best predictor 
variables across all ecosystem types, except in the SAV site. However, P, 
representing the water availability, was the least limiting factor for ET 
across ecosystems. 

The univariate linear models showed a slightly weaker ET-PET 
relationship in WET (R2=0.43, p < 0.05, Fig. 10b). However, any in
crease in PET would significantly increase ET in drier areas, e.g. CVM 
(R2=0.91, p < 0.01) and SAV (R2=0.68, p < 0.01). LAI was the least 
limiting factor for the WET site (R2=0.48, p < 0.05, Fig. 10a). The 
highest correlation between ET and LAI occurred in CVM sites (R2=0.76, 
p < 0.01). Overall, the ET at all sites was sensitive to LAI and PET 
(Fig. 10a and b). Precipitation was not a significant factor affecting ET at 
most sites (R2=0.01–0.22) (Fig. 10c). 

3.5. Comparison of various models using machine learning approaches to 
predict ET 

To further evaluate the combined effects of PET, LAI, and P on ET 
rates, we developed models using the artificial neural network (ANN), 
Generalized Additive Model (GAM), Multiple Linear Regression (MLR), 
and Randon Forest (RF) methods. We used the three main input vari
ables PET, LAI, and P to be comparable with other studies (Fang et al., 
2016; Sun et al., 2011a). 

Results showed that when the monthly data were pooled across all 
sites, the modeled ET using ANN, RF, MLR, and GAM explained 84% of 
the deviation in observed ET. However, when considering each 
ecosystem type separately, the models explained 82% to 95% of the 
variations in observed ET. ANN was the best modeling procedure, 
ranking first to have a good fit between the ANN-model-derived ET and 
the observed ET, whereas, RF was the second-best-fitting model 
(Table 4). GAM and MLR fittings were the poorest and were excluded 
from modeling results in most of the ecosystem types since their 

Fig. 7. Contour plots of the seasonal variation in (a) ecosystem evapotranspi
ration (ET, mm), (b) precipitation (P, mm) and air temperature (Tair, ◦C) as a 
function of elevation (m, asl) across different ecosystem types in the U.S. 
Southeast including GRA (Grasslands), DBF (Deciduous Broadleaf Forests), 
CVM (Cropland Vegetation Mosaics), ENF (Evergreen Needleleaf Forests), WET 
(Wetlands), and SAV (Savannas). 

Table 2 
Mean annual P, ET and PET across all sites including cropland vegetation mosaic (CVM), deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF), grassland 
(GRA), savannas (SAV), and wetland (WET) sites.  

Ecosystem Annual P (mm) Annual ET (mm) Annual PET (mm) 

Mean Min Max Mean Min Max Mean Min Max 

All 1062 538 1870 774 391 1327 1207 565 1574 
CVM 1295 1282 1307 819 759 880 1451 1431 1472 
DBF 1256 674 1870 688 574 864 1039 652 1562 
ENF 1068 538 1616 796 436 1327 1201 882 1509 
GRA 900 791 984 489 391 589 678 565 836 
SAV 931 613 1254 828 643 969 1411 1223 1556 
WET 1127 813 1372 814 518 1032 1216 859 1574  
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relationship with ET was insignificant. (p > 0.05). 

4. Discussion 

4.1. Variability in biological and climate variables across elevation 
gradients 

The distribution of precipitation and temperature across elevational 
gradients played an important role in determining water availability, 
which in turn, influenced ecosystem structure (e.g., biomass) and 
function (e.g. water yield). 

Our study showed that air temperature exhibited higher variability 
(8.0 ◦C – 12.9 ◦C) at high elevation (DBF and GRA sites) compared to 
lower-elevation sites at CVM, SAV, and WET (17.9 ◦C – 22.8 ◦C) (p <
0.05; Supplemental Table 2; Fig. 5 and 7c). This pattern is typical for 
mountainous areas characterized by complex topography and uneven 
precipitation and temperature regimes (Amatya et al., 2018; Qin et al., 
2009; Sun et al., 2020). The monthly precipitation (74.9 mm month− 1 – 
107.8 mm month− 1) and mean air temperature range (8.0 ◦C – 22.8 ◦C; 
Supplemental Table 2, Fig. 7b and c) range followed the patterns from 
across the Southeast U.S. and the United States (Sun et al., 2011b). 

Among all the sites, the GRA site represents the low end of the range in P 
(74.9 mm month− 1) and temperature (8.0 ◦C) (Fig. 7b and c) and other 
climatic and biological variables (i.e. PET, LAI, Rn, and VPD; Supple
mental Table 2). GRA (US-Cav) is located in the Canaan Valley in West 
Virginia with an elevation of 994 m asl (Meyers, 2016). US-Cav site is an 
area where trees and shrubs covered less than 10% of the site, and 
precipitation was the lowest of all sites in this study (74.9 mm month− 1, 
on average) and the lowest PET (56.4 mm month− 1, on average, Sup
plemental Table 2). GRA has the lowest LAI of 1.32 due to the low 
rainfall (R2 = 0.13) and energy-related climate parameter (e.g., Rn, R2 =

0.90). However, ENF sites have a precipitation (89.0 mm month− 1) and 
mean temperature (18.2 ◦C) regime that can support ENF conifer forests 
where trees remain green all year round, and thus have the highest LAI 
(4.11) (p < 0.05) (Supplemental Table 2). The monthly PET (117.5 mm 
month− 1) that exceeds the monthly rainfall amount (77.5 mm month− 1) 
at SAV is a characteristic of somewhat drier soil-water environment 
(Supplemental Table 2). A combination of high PET and low rainfall 
might explain the water stress resulting in a low LAI in water-limited 
ecosystems (Zeppel et al., 2006). 

Fig. 8. Patterns of mean annual ET and P (a) and ET and PET (b) across GRA (Grasslands), DBF (Deciduous Broadleaf Forests), CVM (Cropland Vegetation Mosaics), 
ENF (Evergreen Needleleaf Forests), WET (Wetlands), and SAV (Savannas) ecosystems in the U.S. Southeast. 

Fig. 9. The Budyko curves derived using the mean annual data of ET, PET, and P across the flux sites in the U.S. Southeast. The thick gray and dashed gray lines show 
the physical boundaries of the curve where the dryness index (PET/P) increases with the evaporative index (ET/P) over the energy-limited region and where ET/P is 
independent of PET/P over the water-limited region. Comparison of the Budyko curves derived using the Fu et al., 1981 (blue line), Zhang et al., 2001 (red line), and 
the model developed in this study by optimizing the w (plant-available water coefficient) to 2.67 (green line). Ecosystem type is denoted by colored circles in each 
panel as GRA (Grasslands), DBF (Deciduous Broadleaf Forests), CVM (Cropland Vegetation Mosaics), ENF (Evergreen Needleleaf Forests), WET (Wetlands), and 
SAV (Savannas). 
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4.2. Variation in ET in relation to PET and P across elevation gradients 
and ecosystems types 

At most sites, the monthly ET (40.8 mm month− 1 – 69.0 month− 1) is 
lower than P (75.0 mm month − 1 – 107.8 mm month− 1) (p < 0.05; 
Supplemental Table 2), indicating that severe water stress is unlikely 
unless perhaps, during extreme drought events. Our synthesis study 
indicated that the highest ET rates occur in the summer months (Fig. 7a), 
as commonly observed in other studies in the humid region (Aguilos 
et al., 2021a; Amatya et al., 2016b; Aulenbach and Peters, 2018). The 
16% excess of PET over P (Supplemental Table 2) suggests that actual ET 
is down regulated by the biological processes in this humid region. 

At the lower elevation sites (SAV, CVM, WET, ENF), the mean sea
sonal ET rates varied from 66.2 mm month− 1 to 69.0 mm month− 1, and 
were higher compared to the higher elevation DBF and GRA sites at 40.8 
mm month− 1 and 50.3 mm month− 1, respectively (p < 0.05, Fig. 7a, 
Supplemental Table 2). This supports our hypothesis that ET is higher at 
lower elevation sites regardless of the land cover. The large differences 
in P between the growing season (125 mm month− 1) and the non- 
growing season (69 mm month− 1) (Fig. 7b, seasonal data not shown) 
at the WET sites did not result in large seasonal differences in ET ac
counting for about 70% of P (Fig. 7a). This suggests that ET rates are not 
significantly affected by the amount of P in wetlands, and these wetlands 

Table 3 
Results of the generalized additive model (GAM) analysis to rank predictor 
variables (LAI, PET, P, Rn, VPD, and Tair) according to the ability to explain 
variation in ET. Multiple coefficients of determination, p-values, and AIC were 
also provided. The smaller the AIC value, the better the model fit. The best-fit 
predictor model equation for each ecosystem type is also shown. Variables 
were ranked from highest to lowest based on the order in which they appear in 
the predictor variables column and the best predictor model result. Monthly data 
were used in the analysis.  

Ecosystem Response 
variable 

Predictor variables Multiple 
R2 

p-value AIC 

ALL ET ~ LAI 0.59 <0.05 8794   
LAI + PET 0.61 <0.05 8658   
LAI + PET + Tair 0.64 <0.001 8696   
LAI + PET + Tair 
+ P 

0.7 <0.001 8515   

LAI + PET + Tair 
+ P + VPD 

0.71 <0.001 8488   

LAI + PET + Tair 
+ P + VPD + Rn 

0.78 <0.001 8175 

CVM ET ~ PET 0.91 <0.05 116 
DBF ET ~ LAI 0.76 <0.01 353 
ENF ET ~ LAI 0.51 <0.05 2768   

LAI + PET 0.64 <0.01 2691   
LAI + PET + P 0.71 <0.001 2677   
LAI + PET + P +
Tair 

0.79 <0.001 2671 

GRA ET ~ LAI 0.66 <0.05 244   
LAI + Rn 0.84 <0.01 236   
LAI + Rn + PET 0.88 <0.001 230 

SAV ET ~ VPD 0.82 <0.001 3075   
VPD + Rn 0.86 <0.001 2541   
VPD + Rn + LAI 0.87 <0.001 2488   
VPD + Rn + LAI +
PET 

0.88 <0.001 2472 

WET ET ~ LAI 0.48 <0.001 2276   
LAI + PET 0.53 <0.001 2147   
LAI + PET + VPD 0.69 <0.001 2141  

Ecosystem Best Predictor Model Multiple R2 n  

ALL ET = − 4.47 + 8.84 LAI + 0.29 PET +
0.93 Tair + 0.04 P - 0.57 VPD + 0.01 Rn 

0.78 1813  

CVM ET = − 4.26 + 0.63 PET 0.91 36  
DBF ET = 2.32 + 19.94 LAI 0.76 216  
ENF ET = − 12.35 + 10.89 LAI + 0.21 PET +

0.09 P + 0.82 Tair 
0.79 900  

GRA ET = 10.36 + 11.49 LAI + 0.15 Rn +
0.05 PET 

0.88 72  

SAV ET = 7.64 - 2.50 VPD + 0.17 Rn + 13.18 
LAI + 0.26 PET 

0.88 324  

WET ET = 2.97 + 14.75 LAI + 0.35 PET - 1.72 
VPD 

0.69 264   

Fig. 10. Relationships between evapotranspiration (ET) and (a) leaf area index (LAI), (b) Priestley-Taylor ET (PET), Evapotranspiration (ET), and Precipitation (P) 
across ecosystem types in the U.S. Southeast: GRA (Grassland), DBF (Deciduous Broadleaf Forests), CVM (Cropland Vegetation Mosaic), ENF (Evergreen Needleleaf 
Forests), WET (Wetlands), and SAV (Savannas). 

Table 4 
Model comparisons using the Akaike Information Criterion (AIC).  

Ecosystem Deviance 
Explained 

Model 
Rank 

Models F- 
value 

p-value AIC 

ALL 84%        
1st ANN 125.46 <0.001 2019   
2nd RF 9.65 <0.01 3306   
3rd MLR 5.33 <0.05 3365   
4th GAM 0.84 ns 3376 

CVM 85%        
1st ANN 7.67 <0.01 29 

DBF 92%        
1st ANN 43.9 <0.001 74 

ENF 82%        
1st ANN 47.49 <0.001 1086   
2nd RF 6.21 <0.01 1705 

GRA 95%        
1st ANN 16.1 <0.001 24   
2nd RF 3.16 <0.01 138 

SAV 90%        
1st ANN 154.37 <0.001 323   
2nd RF 12.46 <0.001 521   
3rd MLR 6.91 <0.01 608 

WET 95%        
1st ANN 71.35 <0.001 456   
2nd GAM 4.18 <0.01 677  
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release a consistent amount of water throughout the year. 
Lower rainfall slightly impacted ET rates at GRA (61.3 mm month− 1) 

and DBF (108.9 mm month− 1) at higher elevations (>600 m asl) during 
the growing season (May – September), and even more during winter at 
47 mm month− 1 and 23 mm month− 1, respectively (Fig. 7a, seasonal 
data not shown). Low ET rates at these sites may be attributed to factors 
like lower LAI, temperature, and net radiation received at high eleva
tions. ET is limited by energy in the winter months when precipitation (i. 
e., snow and rainfall) exceeds atmospheric demand (Sun et al., 2011a). 
During the non-growing season, ET is reduced due to low temperatures, 
decreased Rn (Gong et al., 2006), and reduced canopy conductance 
(Zhang et al., 2016). While our synthesis study suggests that water loss 
rates from many ecosystems are highest during the growing season, a 
larger sample size and representation of more vegetation type is needed 
to fully characterize this process. 

On an annual basis, mean P (1062 mm year− 1) far exceeded ET (774 
mm year− 1) rates for most ecosystem types in the study region with 
occasionally ET>P in dry years (Table 2). Globally, ecosystem ET ac
counts for almost half of the total water loss from most terrestrial eco
systems (Zhang et al., 2001). In water-limited or semi-arid systems (e.g., 
savannas, croplands, grasslands, etc.), the percentage of water lost is 
greater or equal to P (Wang et al., 2011). However, the grassland site 
(US-Cav) in our study has the lowest ET rates (489 mm year− 1) among 
all ecosystem types (Table 2). Grasslands cover the cool mountains (i.e., 
lowest PET among all sites) and predominantly comprise shallow clayey 
soils with low infiltration rates, porosity, and hydraulic conductivity and 
low storage capacity, thus resulting in lowest ET rates (Buol and Weed, 
1991; Markewich et al., 1990). Cropland had the highest PET (1451 mm 
year− 1), which it exceeded P (1295 mm year− 1) by 11% (Table 2). The 
CVM site (US-xDS) is a part of the 12,000-acre Disney Wilderness Pre
serve that straddles the headwaters of the Everglades ecosystem in 
Florida (NEON, 2022). This site is seasonally wet and flooded and was 
used as ranchland, and thus is an open area. The P of lower elevations, 
ENF and SAV sites (1068 mm year− 1 and 931 mm year− 1, respectively), 
were also lower than PET (1201 mm year− 1 and 1411 mm year− 1, 
respectively), suggesting dry conditions. PET at GRA and DBF sites (678 
mm year− 1 and 1039 mm year− 1, respectively) was lower than P (900 
mm year− 1 and 1256 mm year− 1, respectively) (P < 0.05), suggesting 
more water is transferred to the soil rather than being released to the 
atmosphere. 

4.3. The Budyko framework 

The ET, P, and PET relationships have been extensively studied using 
the Budyko framework (Budyko, 1974; Sposito, 2017; Zhang et al., 
2004). Even in a humid region with high precipitation, PET/P still had a 
large range, indicating large PET at some sites (Fig. 9). The high 
elevation ecosystems GRA and DBF were energy-limited (PET/P < 1), 
while conifer forests (ENF) and savannas (SAV) on the coastal plain 
could potentially become water-limited (PET/P > 1). When water is not 
limited, conifer forests (ENF) in warm environments have higher ET 
than deciduous forests (p < 0.05). 

An interesting finding from our analysis is that WET sites can become 
water-limited, possibly due to low P and insufficient surface water 
drainage from surrounding uplands, especially during summer (Aguilos 
et al., 2021a, 2020). Unfortunately, our analysis could not fully capture 
extreme events, such as droughts, due to the limited coverage period of 
flux measurement. This limitation highlights the need to have local 
topographic information to evaluate drought effects on ET at the site 
level. The derived general parameter w (2.72) for the Budyko model in 
this study does not deviate largely from reported global values (Fu, 
1981; Zhang et al., 2004), suggesting that we can potentially use the 
derived parameter to estimate mean ET for the humid region that is 
dominated by forests and other vegetations. 

4.4. Key environmental controls on ET 

Our study showed that energy-related variables (PET, Ta, and Rn), 
atmospheric dryness (VPD), vegetation structure (LAI), and water sup
ply (P) variables explained 69% to 91% of the monthly variation in ET 
(Table 3), which aligns with other global studies (Fang et al., 2016; 
Granata, 2019). Notably, LAI was the most critical limiting factor at 
most sites, supporting our hypothesis. LAI is the primary control on ET, 
even in less productive site such as GRA (Nagler et al., 2007). It plays a 
dominant role in influencing ET rates for different ecosystems, such as 
deciduous forests, grassland sites, and wetland areas (Zhou et al., 2010) 
and evergreen forests, (Yang and Zhou, 2011; Zhou et al., 2010). Using 
LAI as an independent variable allows scaling up ground-based stand-
scale ET measurements to the landscape scale using remote sensing 
approaches (Hwang et al., 2009), especially in dry regions (Nagler et al., 
2007). LAI has been shown to be more informative in explaining ET than 
land cover type (Fang et al., 2016). 

For cropland site (CVM), PET was the sole best predictor, indicating a 
strong response to soil water stress in areas with low soil water content 
(Stoy et al., 2006). Not surpisingly, P did not strongly influence ET 
across all sites. This suggests that U.S. Southeast ecosystems rarely 
experienced severe water stress during the years of this study, especially 
at forested sites with mature forests having access to deep soil water 
reserves (Aguilos et al., 2018a). 

Our results show that LAI, Rn, and Tair have a more significant in
fluence on ET compared to P. This suggests that ET is primarily 
controlled by biological factors like canopy structure (LAI) and energy- 
related parameters, rather than water availability. However, there are 
other factors not considered here, such as age, disturbance history, land 
use, soils, vegetation traits, and forest management, which may impact 
ET and should be explored in future investigations (Aguilos et al., 2014; 
Komatsu and Kume, 2020; Peel et al., 2010; Williams et al., 2012; Zhang 
et al., 2001). 

4.5. Modeling ET using LAI, PET, and P 

While our analysis shows that a series of factors have predictive 
power for ET at a monthly scale, some climate data (e.g. Rn) were not 
readily available. Here, we developed simplified yet efficient models 
using only LAI, PET, and P to predict ET at a regional scale (Fang et al., 
2016; Sun et al., 2011a). 

Our machine learning algorithms results showed that artificial neural 
networks (ANN) had the most robust model performance (Table 4). Past 
research indicated that ANN offers a promising alternative model in 
hydrological modeling studies (Feng et al., 2017; Kisi, 2008; Stangierski 
et al., 2019). However, the application of ANN to ET modeling has not 
been widely explored. Here, the accuracy of all machine learning ET 
models used here for monthly ET prediction at a regional scale was high, 
as evidenced by a deviation explaining up to 84% of the variation. The 
models performed best in DBF, GRA and WET over a wide elevation 
range, suggesting that future studies would benefit by including lat
itudinal gradients of diverse ecosystems for better model fitting. How
ever, our data has elevation gaps between ~200 to 600 m and ~600 to 
1000 m, which may result in some model uncertainties or lack of 
representation. 

The varying model fittings across different ecosystem types of the U. 
S. Southeast indicates that no single model equation can adequately 
capture the spatial variability in ET using the predictors in this analysis. 
We found a low model fits for CVM (Deviance Explained = 85%) and 
ENF (DE = 82%), suggesting that even with energy and water- 
dominated variables (PET and P) coupled with biological component 
(LAI), the models could not fully account for ET dynamics at these non- 
water limited sites (Table 4). Additional biological and climatic vari
ables are still needed to address this issue. We found that the model 
strength of lumped models (developed by pooling all site data together) 
was inferior (max DE = 84%) to those models developed for each 
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individual ecosystem (max DE = 95%), suggesting the need to devel
oping ecosystem-specific models, as we hypothesized. Overall, we found 
no single machine learning algorithm is best for all situations. The 
performance of the models strongly depends on the size, structure, and 
quality of available data. 

4.6. Limitations and uncertainties 

Several challenges and uncertainties are worth mentioning in our 
analysis of regional monthly ET patterns. One major common uncer
tainty arises from using eddy covariance flux data, which is measured 
within a relatively small volume of air but represents the energy and gas 
exchange integrated over an entire ecosystem over a fixed period of time 
(usually 30 min to one hour). Additionally, the AmeriFlux database 
biome representation and land cover classification accuracy pose issues. 
Many flux sites are located in mature or unmanaged forests (e.g. US-Elm, 
US-Esm, US-SP1, US-Cwt, US-xGR among others; Supplementary 
Table 1), potentially underrepresenting recently harvested or young 
managed forests (e.g. US-NC1, US-NC3, US-HB3) with different ET rates. 
Moreover, the limited and skewed sample size of the AmeriFlux sites 
used in this synthesis is biased towards matured forest ecosystems with 
little disturbance. It is also known that LE data derived from flux towers 
are also prone to measurement errors related to surface energy balance, 
3-D wind measurements, instrument failures, and gap-filling techniques 
(Leuning et al., 2012; Nakai and Shimoyama, 2012; Shao et al., 2015). 
Our WET sites also represent contrasting water regimes, especially at the 
wetland sites. US-NC4, a bottomland hardwood forested wetland forest 
in North Carolina is energy-limited (Fig. 9), while the other two (US-Esm 
and US-Elm) in Florida are water-limited wetlands. This can lead to a 
significant error in ET estimation over this WET ecosystem when data 
from such disparate sites are aggregated. 

Another limitation of our analysis is that we did not account for 
extreme conditions such as flooding, drought, and forest fire. Future 
studies should address this to improve water resource management 
decision-making during extreme events (Nagler et al., 2007). 
MODIS-derived LAI is shown to be overestimated, especially in a 
multi-layer structured ecosystem (Cohen et al., 2006). MODIS LAI 
fluctuated unrealistically, and vegetation misclassification increased the 
errors in estimating LAI (Fang et al., 2016). Additionally, MODIS LAI has 
a very coarse spatial resolution (500 m) which has been shown to be 
inadequate for the U.S. Southeast (Blinn et al., 2019). These errors can 
be reduced by using Landsat Imagery with higher spatial resolution. 

4.7. Implications 

Many researchers have primarily focused on the supply side of the 
water availability (e.g., rainfall, soil water content, groundwater), while 
largely overlooking the demand side (e.g. ET) (Fisher et al., 2017). 
Understanding both aspects, especially ET, which historically has been 
challenging to quantify and scale, is crucial, particularly with the 
increasing atmospheric water demand driven by climate change and 
management practices. A holistic approach in assessing the water bal
ance is important for proper water resources management and under
standing vegetation stress responses. 

In the context of global climate change, our energy-limited envi
ronments (PET/P < 1) e.g., GRA and DBF, may be more positively and 
significantly affected by global warming (Figs. 8 and 9). Rising air 
temperature and VPD increase atmospheric demand, and climate- 
induced changes are impacting vegetation dynamics, productivity, and 
species distributions, influencing carbon and water cycles. However, our 
lower elevation sites that are slightly water-limited environments (PET/ 
P > 1) maybe negatively affected in a future warmer climate due to 
predicted water stress. Thus, any reduction in PET or decline in P could 
push lower elevation ecosystems to either reduce productivity or 
fundamentally change in species distribution and prevalence. Thus, 
continuous monitoring of P and PET trends is crucial for future 

ecosystem management to enhance ecosystem resilience to the changing 
climate. 

During the period of this study, P was relatively uniformly distrib
uted across the study region. Lower ET losses of water from P during the 
non-growing season could help in soil water recharge to meet the water 
demands during the growing season. Disruption of this pattern due to 
climate change substantially impacts water use, thus affecting 
ecosystem sustainability and provisioning of ecosystem services to so
ciety. As suggested by our synthesis study, decreased P coupled with 
increasing temperature during the non-growing season could affect ENF 
and GRA sites with high water consumption in summer (70%− 82% of P) 
and even more severely for the SAV sites with even higher ET water 
losses (116%). Under such conditions, savanna vegetation might tran
sition into a more degraded ecosystem. Similarly, ET of croplands and 
conifer plantations exceeded more than 50% of P, potentially compro
mising stand development This low resilience to future conditions of 
decreased water availability and higher atmospheric demand could 
compromise other ecosystem functions, such as productivity, carbon 
storage, and biodiversity. 

5. Conclusions 

We present a multi-ecosystem regional synthesis study that eluci
dates the relationships among between the ecosystem water loss through 
ET, water and energy availability, and vegetation dynamics. Our find
ings indicate that water availability may not be the main limiting factor 
of ET in the humid southeastern U.S. region that is generally ‘energy 
limited’. Monthly and annual ET in the Southeast can be reliably esti
mated by atmospheric demand alone without, considering precipitation. 
In addition to energy availability, LAI is a strong control of seasonal ET, 
suggesting that the vegetation management can modify the hydrology of 
the study region, The models derived from this study provide a tool to 
manage ecosystem water balance for sustaining ecosystem functions in a 
changing environment. 

Estimating ecosystem ET at a large scale remains challenging due to 
incomplete spatial and temporal data coverage, and incomplete repre
sentation of diverse ecosystems, physiographic settings and vegetation 
characteristics including understory vegetation and management prac
tices. Thus, there is a need to expand the network of eddy covariance 
flux measurements to focus on ecosystems less represented in the current 
Ameriflux network, such as riparian forests, shrublands, grasslands, 
savannas, or wetlands sites, especially in highly-disturbed areas (i.e., 
urban areas) and under various forest management practices (i.e., pre
scribed burning). Despite the limitations and uncertainties of currently 
available data, this study provides the template for modeling frame
works, and offers some practical models that can be applied with readily 
available data to natural water resource management at local or regional 
scales. Additionally, the ET models are needed to be evaluated against 
independent data sources such as gaged watersheds and ET estimated 
from remote sensing. 
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